
A complete analysis of peptide microarray binding data using the

pepStat framework

Greg Imholte*, Renan Sauteraud�, Mike Jiang�and Raphael Gottardo§

April 25, 2023

This document present a full analysis, from reading the data to displaying the results that
makes use of all the packages we developped for peptide microarray.

Contents

1 Introduction 3
1.1 Requirements . 3

2 Generating a peptideSet 3
2.1 Reading in .gpr files . 3
2.2 Additional arguments . 4
2.3 Visualize slides . 4

3 Adding peptide informations 5
3.1 Creating a custom peptide collection . 6
3.2 Summarize the information . 6

4 Normalization 6

5 Data smoothing 7

6 Making calls 7

7 Results 8
7.1 summary . 8
7.2 Plots . 8

8 shinyApp 10

9 Quick analysis 11

*gimholte@uw.edu
�rsautera@fhcrc.org
�wjiang2@fhcrc.org
§rgottard@fhcrc.org

1

10 sessionInfo 12

2

1 Introduction

The pepStat package offers a complete analytical framework for the analysis of peptide microarray
data. It includes a novel normalization method to remove non-specific peptide binding activity
of antibodies, a data smoothing reducing step to reduce background noise, and subject-specific
positivity calls.

1.1 Requirements

The pepStat package requires GSL, an open source scientific computing library. This library is
freely available at http://www.gnu.org/software/gsl/.

In this vignette, we make use of the samples and examples available in the data package pepDat.

2 Generating a peptideSet

library(pepDat)

library(pepStat)

2.1 Reading in .gpr files

The reading function, makePeptideSet, takes a path as its argument and parses all the .gpr files
in the given directory. Alternatively, one may specify a character vector of paths to individual .gpr
files.

By default channels F635 Median and B635 Median are collected, and the ’normexp’ method
of the backgroundCorrect function in the limma package corrects probe intensities for background
fluorescence. Other methods may be selected, see documentation.

mapFile <- system.file("extdata/mapping.csv", package = "pepDat")

dirToParse <- system.file("extdata/gpr_samples", package = "pepDat")

pSet <- makePeptideSet(files = NULL, path = dirToParse,

mapping.file = mapFile, log=TRUE)

While optional, it is strongly recommended to provide a mapping.file giving annotations data
for each slide, such as treatment status or patient information. If provided, the mapping.file should
be a .csv file. It must include columns labeled filename, ptid, and visit. Elements in column
filename must correspond to the filenames of slides to be read in, without the .gpr extension.
Column ptid is a subject or slide identifier. Column visit indicates a case or control condition,
such as pre/post vaccination, pre/post infection, or healthy/infected status. Control conditions
must be labelled pre, while case conditions must be labelled post. Alternatively, one may input a
data.frame satisfying the same requirements.

This minimal information is required by pepStat’s functions further in the analysis. Any
additional information (column) will be retained and can be used as a grouping variable.

If no mapping file is included, the information will have to be added later on to the peptideSet
object.

3

http://www.gnu.org/software/gsl/

For our example, we use a toy dataset of 8 samples from 4 patients and we are interested in
comparing the antibody binding in placebo versus vaccinated subjects.

read.csv(mapFile)

filename ptid visit treatment

1 f1_1 1 Pre PLACEBO

2 f1_2 1 Post PLACEBO

3 f2_1 2 Pre PLACEBO

4 f2_2 2 Post PLACEBO

5 f3_1 3 Pre VACCINE

6 f3_2 3 Post VACCINE

7 f4_1 4 Pre VACCINE

8 f4_2 4 Post VACCINE

2.2 Additional arguments

The empty spots should be listed in order to background correct the intensities. It is also useful to
remove the controls when reading the data. Here we have the JPT controls, human Ig (A, E and
M) and dye controls.

pSetNoCtrl <- makePeptideSet(files = NULL, path = dirToParse,

mapping.file = mapFile, log = TRUE,

rm.control.list = c("JPT-control", "Ig", "Cy3"),

empty.control.list= c("empty", "blank control"))

2.3 Visualize slides

We include two plotting functions to detect possible spatial slide artifacts. Since the full plate is
needed for this visualization, the functions will work best with rm.contol.list and empty.control.list
set to NULL in makePeptideSet.

plotArrayImage(pSet, array.index = 1)

4

5

10

Intensity

Sample Name: f1_1

plotArrayResiduals(pSet, array.index = 1, smooth = TRUE)

−3

−2

−1

0

1

2

Intensity

Smoothed Residuals for Sample Name f1_1

3 Adding peptide informations

At this point, the peptideSet contain only the peptide sequences and the associated background
corrected intensities. To continue with the analysis, we need to add the position information, as
well as physicochemical properties of the peptides summarized by their z-scales.

The slides used in this example are the enveloppe of HIV-1 and peptide collections are available
for this in our pepDat package (please refere to the vignette and ?pep hxb2 for more information).
However, we will pretend that this is not the case to show an example of how to build a custom
peptide collection.

5

3.1 Creating a custom peptide collection

Here, we load a data.frame that contains the peptides used on the array as well as their start and
end coordinates, and clade information.

peps <- read.csv(system.file("extdata/pep_info.csv", package = "pepDat"))

head(peps)

start end peptide clade

1 1 16 MRVKETQMNWPNLWK CRF01

2 1 16 MRVMGIQKNYPLLWR CRF02

3 1 16 MRVMGIQRNCQHLWR A

4 1 16 MRVKGIRKNYQHLWR B

5 1 16 MRVRGILRNWQQWWI C

6 1 16 MRVRGIERNYQHLWR D

Then we call the constructor that will create the appropriate collection.

pep_custom <- create_db(peps)

pep custom is a GRanges object with the required ”peptide” metadata column and the physio-
chemical properties of each peptide sequence summarized by z-scores.

Note that the function will also accept GRanges input.

pep_custom <- create_db(pep_custom)

3.2 Summarize the information

The function summarizePeptides summarizes within-slide replicates by either their mean or me-
dian. Additionaly, with the newly constructed peptide collection, peptides positions and annota-
tions can be passed on to the existing peptideSet. Alternately, the function could be callled directly
on the data.frame object. Internally, summarizePeptides will call create db to make sure the
input is formatte appropriately.

psSet <- summarizePeptides(pSet, summary = "mean", position = pep_custom)

Some peptides have no match in the GRanges object rownames and are removed from

the peptideSet!

Now that all the required information is available, we can proceed with the analysis.

4 Normalization

The primary goal of the data normalization step is to remove non-biological source of bias and in-
crease the comparability of true positive signal intensities across slides. The method developped for
this package uses physiochemical properties of individual peptides to model non-specific antibody
binding to arrays.

6

pnSet <- normalizeArray(psSet)

An object of class peptideSet containing the corrected peptides intensities is returned.

5 Data smoothing

The optional data smoothing step takes advantage of the overlapping nature of the peptides on the
array to remove background noise caused by experimental variation. It is likely that two overlapping
peptides will share common binding signal, when present. pepStat use a sliding mean technique
technique to borrow strength across neighboring peptides and to reduce signal variability. This
statistic increases detection of binding hotspots that noisy signals might otherwise obscure. Peptides
are smoothed according to their sequence alignment position, taken from position(psSet).

From here on, two types of analyses are possible. The peptides can be aggregated by position or
split by clade. When aggregating by position, the sliding mean will get information from surround-
ing peptides as well as peptides located around their coordinates in other clades. This increase the
strength of calls but the clade specificity is lost.

It is common to do a first run with aggregated clades to detect binding hotspots and then do
a second run to look for clade specificity in the peaks found during the first run.

This is decided by the split.by.clade argument. By default it is set to TRUE for a clade
specific analysis.

psmSet <- slidingMean(pnSet, width = 9)

For the aggregated peptideSet we set it to FALSE.

psmSetAg <- slidingMean(pnSet, width = 9, split.by.clade = FALSE)

6 Making calls

The final step is to make the positivity calls. The function makeCalls automatically uses infor-
mation provided in the mapping file, accessed via pData(pSet). It detects whether samples are
paired or not. If samples are paired, POST intensities are subtracted from PRE intensities, then
thresholded. Otherwise, PRE samples are averaged, and then subtracted from POST intensities.
These corrected POST intensities are thresholded.

The freq argument controls whether we return the percentage of responders against each pep-
tide, or a matrix of subject specific call. When freq is TRUE, we may supply a group variable from
pData(psmSet) on which we split the frequency calculation.

calls <- makeCalls(psmSet, freq = TRUE, group = "treatment",

cutoff = .1, method = "FDR", verbose = TRUE)

You have paired PRE/POST samples

The selected threshold T is 1.100119

7

The function automatically selected an appropriate FDR threshold.

callsAg <- makeCalls(psmSetAg, freq = TRUE, group = "treatment",

cutoff = .1, method = "FDR")

7 Results

7.1 summary

To get a summary of the analysis, for each peptide, the package provides the function restab that
combines a peptideSet and the result of makeCalls into a single data.frame with one row per
peptide and per clade.

summary <- restab(psmSet, calls)

head(summary)

peptide position start end width clade PLACEBO

MRVKETQMNWPNLWK_CRF01 MRVKETQMNWPNLWK 8 1 16 16 CRF01 0

MRVKGIRKNYQHLWR_B MRVKGIRKNYQHLWR 8 1 16 16 B 0

MRVMGIQKNYPLLWR_CRF02 MRVMGIQKNYPLLWR 8 1 16 16 CRF02 0

MRVMGIQRNCQHLWR_A MRVMGIQRNCQHLWR 8 1 16 16 A 0

MRVMGIQRNWQHLWR_M MRVMGIQRNWQHLWR 8 1 16 16 M 0

MRVRGIERNYQHLWR_D MRVRGIERNYQHLWR 8 1 16 16 D 100

VACCINE

MRVKETQMNWPNLWK_CRF01 0

MRVKGIRKNYQHLWR_B 0

MRVMGIQKNYPLLWR_CRF02 0

MRVMGIQRNCQHLWR_A 0

MRVMGIQRNWQHLWR_M 0

MRVRGIERNYQHLWR_D 0

Note that if calls are made with a peptideSet that has been normalized with split.by.clade

set to FALSE, the table will have one row per peptide. Peptides that are identical accross clades
will only have one entry.

7.2 Plots

As part of the pipeline for the analysis of peptide microarray data, the Pviz package includes a
track that can use the result of an experiment to generate plots.

When analysing all clades at once, the plot inter function can be used to easily identify
binding peaks. It gives an overview of the differences between the selected groups. In this case,
comparing placebo and vaccine.

library(Pviz)

8

Warning: replacing previous import ’utils::findMatches’ by ’S4Vectors::findMatches’

when loading ’AnnotationDbi’

summaryAg <- restab(psmSetAg, callsAg)

plot_inter(summaryAg)

100

200

300

400

500

600

700

800

NH COOH

F
ea

tu
re

s

V1 V2 V3 V4 V5
M

PER
TM

0

20

40

60

80

100

F
re

q

PLACEBO VACCINE

When clade specific calls have been made, it is more interesting to plot each clade on a separate
track.

plot_clade(summary, clade=c("A", "M", "CRF01"), from = 300, to = 520)

9

350

400

450

500

NH COOH

V3 V4 V5

0

20

40

60

80

100

A

0

20

40

60

80

100

M

0
20
40
60
80

100

C
R

F
01

PLACEBO VACCINE

Much more complex plots can be made, custom tracks can be added and every graphical pa-
rameter can be tweaked. Refer to the Pviz documentation as well as the Gviz package for detailed
information on all tracks and display paramters.

8 shinyApp

As part of the package, a shinyApp provides a user interface for peptide microarray analysis. After
making the calls, the results can be downloaded and the app displays plots as shown in the previous
sections.

The app can be started from the command line using the shinyPepStat function.

shinyPepStat()

10

9 Quick analysis

Here we showcase a quick analysis of peptide microarray data for HIV-1 gp160. This displays the
minimal amount of code required to go from raw data file to antibody binding positivity call.

library(pepStat)

library(pepDat)

mapFile <- system.file("extdata/mapping.csv", package = "pepDat")

dirToParse <- system.file("extdata/gpr_samples", package = "pepDat")

ps <- makePeptideSet(files = NULL, path = dirToParse, mapping.file = mapFile)

data(pep_hxb2)

ps <- summarizePeptides(ps, summary = "mean", position = pep_hxb2)

ps <- normalizeArray(ps)

ps <- slidingMean(ps)

calls <- makeCalls(ps, group = "treatment")

summary <- restab(ps, calls)

11

10 sessionInfo

sessionInfo()

R version 4.3.0 RC (2023-04-18 r84287)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 22.04.2 LTS

##

Matrix products: default

BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so

LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

time zone: America/New_York

tzcode source: system (glibc)

##

attached base packages:

[1] grid stats4 stats graphics grDevices utils datasets

[8] methods base

##

other attached packages:

[1] Pviz_1.35.0 Gviz_1.45.0 GenomicRanges_1.53.0

[4] GenomeInfoDb_1.37.0 pepStat_1.35.0 IRanges_2.35.0

[7] S4Vectors_0.39.0 Biobase_2.61.0 BiocGenerics_0.47.0

[10] pepDat_1.19.0 knitr_1.42

##

loaded via a namespace (and not attached):

[1] RColorBrewer_1.1-3 rstudioapi_0.14

[3] magrittr_2.0.3 GenomicFeatures_1.53.0

[5] farver_2.1.1 rmarkdown_2.21

[7] BiocIO_1.11.0 fields_14.1

[9] zlibbioc_1.47.0 vctrs_0.6.2

[11] memoise_2.0.1 Rsamtools_2.17.0

[13] RCurl_1.98-1.12 base64enc_0.1-3

[15] htmltools_0.5.5 progress_1.2.2

[17] curl_5.0.0 Formula_1.2-5

[19] htmlwidgets_1.6.2 plyr_1.8.8

[21] cachem_1.0.7 GenomicAlignments_1.37.0

12

[23] lifecycle_1.0.3 pkgconfig_2.0.3

[25] Matrix_1.5-4 R6_2.5.1

[27] fastmap_1.1.1 GenomeInfoDbData_1.2.10

[29] MatrixGenerics_1.13.0 digest_0.6.31

[31] colorspace_2.1-0 AnnotationDbi_1.63.0

[33] Hmisc_5.0-1 RSQLite_2.3.1

[35] filelock_1.0.2 labeling_0.4.2

[37] fansi_1.0.4 httr_1.4.5

[39] compiler_4.3.0 bit64_4.0.5

[41] withr_2.5.0 htmlTable_2.4.1

[43] backports_1.4.1 BiocParallel_1.35.0

[45] viridis_0.6.2 DBI_1.1.3

[47] highr_0.10 maps_3.4.1

[49] biomaRt_2.57.0 rappdirs_0.3.3

[51] DelayedArray_0.27.0 rjson_0.2.21

[53] tools_4.3.0 foreign_0.8-84

[55] nnet_7.3-18 glue_1.6.2

[57] restfulr_0.0.15 checkmate_2.1.0

[59] cluster_2.1.4 generics_0.1.3

[61] gtable_0.3.3 BSgenome_1.69.0

[63] ensembldb_2.25.0 data.table_1.14.8

[65] hms_1.1.3 xml2_1.3.3

[67] utf8_1.2.3 XVector_0.41.0

[69] pillar_1.9.0 stringr_1.5.0

[71] spam_2.9-1 limma_3.57.0

[73] dplyr_1.1.2 BiocFileCache_2.9.0

[75] lattice_0.21-8 deldir_1.0-6

[77] rtracklayer_1.61.0 bit_4.0.5

[79] biovizBase_1.49.0 tidyselect_1.2.0

[81] Biostrings_2.69.0 gridExtra_2.3

[83] ProtGenerics_1.33.0 SummarizedExperiment_1.31.0

[85] xfun_0.39 matrixStats_0.63.0

[87] stringi_1.7.12 lazyeval_0.2.2

[89] yaml_2.3.7 evaluate_0.20

[91] codetools_0.2-19 interp_1.1-4

[93] tibble_3.2.1 cli_3.6.1

[95] rpart_4.1.19 munsell_0.5.0

[97] dichromat_2.0-0.1 Rcpp_1.0.10

[99] dbplyr_2.3.2 png_0.1-8

[101] XML_3.99-0.14 parallel_4.3.0

[103] ggplot2_3.4.2 blob_1.2.4

[105] prettyunits_1.1.1 dotCall64_1.0-2

[107] jpeg_0.1-10 latticeExtra_0.6-30

[109] AnnotationFilter_1.25.0 bitops_1.0-7

[111] viridisLite_0.4.1 VariantAnnotation_1.47.0

13

[113] scales_1.2.1 crayon_1.5.2

[115] rlang_1.1.0 KEGGREST_1.41.0

14

	Introduction
	Requirements

	Generating a peptideSet
	Reading in .gpr files
	Additional arguments
	Visualize slides

	Adding peptide informations
	Creating a custom peptide collection
	Summarize the information

	Normalization
	Data smoothing
	Making calls
	Results
	summary
	Plots

	shinyApp
	Quick analysis
	sessionInfo

