Introduction to iBB1G

Aedin Culhane, Daniel Gusenleitner

April 25, 2023

1 iBBiG

Iterative Binary Bi-clustering of Gene sets (iBBiG) is a bi-clustering algorithm optimized for discovery of over-
lapping biclusters in spare binary matrices of data (Gusenleitner ef al. in review).

We have optimized this method for the discovery of modules in matrices of discretized p-values from gene
set enrichment analysis (GSA) of hundreds of datasets. However, it could be applied to any binary (1,0) matrix,
such as discretized p-values from any sources of binary data. We apply iBBiG to meta-GSA to enable integrated
analysis over hundreds of gene expression datasets. By integrating data at the levels of GSA results, we avoid
the need to match probes/genes across multiple datasets, making large scale data integration a tractable problem.

iBBiG scales well with the dimensions of meta-datasets and is tolerant to noise characteristic of genomic
data. It outperformed other traditional clustering approaches (Hierarchical clustering, k-means) or biclustering
methods (bimax, fabia, coalesce) when applied to simulated data.

2 Application to simulated dataset

To demonstrate iBBiG, we will use a simulated binary dataset of 400 rows x 400 columns (as described by
Gusenleitner ef al.), in which a 1 indicates a positive association (or p < 0.05) between a gene set (row) and the
results of a pairwise test between clinical covariates (column), and a 0 represents a lack of association.

To simulate random noise characteristically observed in genomic data, 10% random background noise (value
of 1) was introduced into the matrix.

The matrix was seeded with seven artificial modules or bi-clusters (M1-M7; Figure 1) by assigning associa-
tions (value of 1) to its column and row pairs. To replicate the expected properties of real data, seeded modules
partially overlapped in columns, in rows and in both rows and columns simultaneously. M1 gene sets overlap
with most other modules with the exception of M3. M2 has overlapping pairwise tests with modules M4-7.

Artificial modules also have highly varying sizes and aspect ratios, including "wide" modules driven by a
large number of pairwise tests and only a few gene sets and "tall" modules like M1 which consist of 25 pairwise
tests and a large number of gene sets (n = 250). This latter type of module might represent a complex, well-
characterized biological process such as proliferation.

In a real data set the signal strength will vary both between and within modules. Variance between modules
was simulated by imposing random noise (1 -> 0 replacement) with different signal strengths on the modules
(Figure 1). Within a module, we expect to see a few strong signals (gene sets associated with all pairwise tests)
and many weaker signals. Therefore within each module, a noise gradient was also applied so that the first gene
sets had the greatest number of associations (Figure 1). This overlaid noise gradient ranged from 10 to 60% and
varied between modules (Table 1).

To create this simulated data as described in Gusenleitner, et al. use the function makeArtifical which
creates an object of class iBBiG, an extension of biclust.

> library (iBBiG)
> binMat<-makeArtificial ()



[1] "xxxxx Summary of Design Matrix s#k*xxx"
Rows Cols DensityLow DenistyHigh

M1 250 25 0.4 0.9
M2 75 175 0.4 0.8
M3 50 50 0.5 0.8
M4 40 40 0.4 0.9
M5 30 30 0.4 0.8
M6 20 20 0.6 0.9
M7 40 40 0.5 0.6

Cluster sizes in new iBBiG (Biclust) data object

Number of Modules: 7

RoOws 250 75 50 40 30 20
Columns 25 175 50 40 30 20

> binMat
An object of class iBBiG

Number of Clusters found: 7

First 5 Cluster scores and sizes:
(11 [,21 [,3] [,4] [,5]

Cluster Score NA NA NA NA NA
Number of Rows: 250 75 50 40 30
Number of Columns: 25 175 50 40 30

> plot (binMat)

40

40



Gene Signatures

Phenotypes
Module Size
@
[}
> 150
B
c
2 100
S
57 J
E ol @ e ]
P4

The class BiClust contains the number of clusters and two logical matrices which indicate whether a row or
column are present in the cluster.

> str (binMat)

Formal class

..Q

@

'iBBiG' [package "iBBiG"] with 8 slots
Seeddata num [1:400, 1:400] 1 1 11 11 0011
.— attr(*, "dimnames")=List of 2
.$ : chr [1:400] "sig_1" "sig_2" "sig_ 3" "sig_4"
.$ : chr [1:400] "cov_1" "cov_2" "cov_3" "cov_4"
RowScorexNumber: num[0 , 0 ]
Clusterscores num (0)
Parameters :List of 3
..$ designMatrix: num [1:7, 1:6] 251 51 1 46 81 106 151 51 251 1
.— attr(x, "dimnames")=List of 2
.$ ¢ chr [1:7] "M1" "M2" "M3" "M4"
.S ¢ chr [1:6] "startC" "startR" "endC" "endR"
..$ nRow num 400
..$ nCol num 400
RowxNumber logi [1:400, 1:7] FALSE FALSE FALSE FALSE FALSE FALSE
NumberxCol logi [1:7, 1:400] FALSE FALSE TRUE FALSE FALSE FALSE



..Q@ Number : int 7
..@ info : list ()

> Number (binMat)
(11 7
> RowxNumber (binMat) [1:2, ]

(~11 ,21 [,31 [,4] [,5] [,6] [,7]
[1,] FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[2,] FALSE FALSE TRUE FALSE FALSE FALSE FALSE

> NumberxCol (binMat) [,1:2]

(11 [,2]
[1,] FALSE FALSE
[2,] FALSE FALSE
[3,] TRUE TRUE
[4,] FALSE FALSE
[5,] FALSE FALSE
[6,] FALSE FALSE
[7,] FALSE FALSE

The matrix RowxNumber is a logical matrix having a number of rows equal to that of binMat and a number
of columns equal to the number of detected clusters. NumberxCol is reversed; this class has a row count equal to
the number of clusters and a column count of the number of columns of binMat.

To run iBBiG on this artificial binary matrix, simply call the function iBBiG. The function plot and
statClust will provide a visual representation and statistical summary of the results of the cluster analysis.

> res<—- 1BBiG(binMat@Seeddata, nModules=10)

Module: 1 done
Module: 2 done
Module: 3 done
Module: 4 done
Module: 5 done
Module: 6 done
Module: 7 done
Module: 8 done
Module: 9 done
Module: 10 ... done

> plot (res)



Gene Signatures

Phenotypes
Module Size Module Score Weighted Score
2 o
[

= 150 3 2500 5 6
2 4 2000 3,
£ 100 2 1500 3
T 50 © 1000 % 2
2 2 500 ]
z HNO’)Q‘L{)LDI\OOOS HNO’)Q‘L{)LDI\OOOS HN(V:Q‘LOLDI\CDOS

SZ3355333_ S33355333_ SZ3355333

If you wish to compare two 1BBiG or Biclust results, for example a prediction and a gold standard (GS),
the function JIdist will calculate the Jaccard Index distance between two Biclust or iBBiG result objects. By
default, it calculates the distances between each column. Setting margin = row or margin = both will cause
the function to calculate instead the JI distance between the rows, or an average of rows/columns.

By default, RfunctionJIdist returns a data.frame with 2 columns, the column n indicating which cluster was
the best match (maximum JI) to each cluster of the second iBBiG object (GS). The column JI contains the
Jaccard Index distance between the columns of these two clusters. If best = FALSFE, the function will return
the distance matrix instead of the best match.

> JIdist (res,binMat)

n JI
GS_1 1 1.000
GS_2 2 0.977
GS_3 3 1.000
GS_4 4 1.000
GS_5 5 0.900
GS_6 8 1.000
GS_7 6 0.725

> JIdist (res,binMat, margin="col", best=FALSE)



ERERRERRERERERR ERERRERERERR
B 0o do 0 W N

(@}

\%

GS_
GS_
GS_
GS_

GS

GS_
GS_

> JIdist (res, binMat,

GS_
GS_
GS_
GS_
GS_
GS_
GS_

> JIdist (res,binMat,

GS_
GS_

GS

GS_

H O 0 J o U b W

JIdist (res,binMat,

1

6
-

1

6
5

O O O OO OO oo

O O PP OO OO o oo

oY 0 U W NS

o 0 Ul W NS

S w3

Gs_1

.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.07142857
.00000000
.12000000
.00000000

GS_6

.0000000
.1169591
.0000000
.0000000
.119047¢6
.0000000
.0000000
.0000000
.0000000
.0000000

JI
.000
.977
.000
.000
.900
.000
.725

oOr OoORrR PO

JI
.764
.787
.920
.767
.619
.655
.558

O O O O O o o

JI
.764
.764
.920
767

e e

O O O O OO O o oo

O O O O OO oo oo

GS_2
.00000000
.97714286
.00000000
.19444444
.15428571
.16571429
.01694915
.11428571
.00000000
.01714286

GS_7

.00000000
.23391813
.00000000
.00000000
.00000000
.72500000
.07142857
.00000000
.00000000
.07500000

O O O OO ook oo

GS_3

.00000000
.00000000
.00000000
.05882353
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000

margin="col")

margin="row")

margin="both")

O O O OO ok OoOoOo

Gs_4

.00000000
.19209040
.05882353
.00000000
.04687500
.00000000
.00000000
.00000000
.00000000
.00000000

O O O O OO oo oo

GS_5

.00000000
.16860465
.00000000
.07692308
.90000000
.00000000
.00000000
11111111
.00000000
.00000000



GS_5 5 1.519
GS_6 8 1.655
GS_7 6 1.283

To view the code of the function JIdist

> showMethods (JIdist)
getMethod (iBBiG: ::JIdist, signature (clustObj = "iBBiG", GS = "iBBiG"))
> getMethod ("JIdist", signature(clustObj="iBBiG", GS="iBBiG"))

\%

To extract performance statistics between two iBB1iG results, use analyzeClust, which will take a single
iBBIG result object or a list of objects and compare these to a gold standard (another iBBiG or biclust object).
Again results can be based on matches to the best row, column or both.

> analyzeClust (res,binMat)

[1] "list"
Run n JI nRow nCol col-accuracy col-sensitivity
Gs_1 11 1.000 191 25 1.000 1.000
GS_2 12 0.977 59 171 0.990 0.977
GS_3 1 3 1.000 46 50 1.000 1.000
GS_4 1 4 1.000 36 40 1.000 1.000
GS_5 1 5 0.900 38 27 0.993 0.900
GS_6 1 8 1.000 28 20 1.000 1.000
GS_7 1 6 0.725 41 29 0.973 0.725
col-specificity col-PPV col-NPV row-accuracy
GS_1 1 1 1.000 0.853
GS_2 1 1 0.983 0.960
GS_3 1 1 1.000 0.990
GS_4 1 1 1.000 0.975
GS_5 1 1 0.992 0.960
GS_6 1 1 1.000 0.975
GS_7 1 1 0.970 0.943
row-sensitivity row-specificity row-PPV row-NPV
Gs_1 0.764 1.000 1.000 0.718
GS_2 0.787 1.000 1.000 0.953
GS_3 0.920 1.000 1.000 0.989
GS_4 0.825 0.992 0.917 0.981
GS_5 0.867 0.968 0.684 0.989
GS_6 0.950 0.976 0.679 0.997
GS_7 0.725 0.967 0.707 0.969
> analyzeClust (res,binMat, margin="col")
[1] "list"
Run n JI nRow nCol col-accuracy col-sensitivity
GS_1 11 1.000 191 25 1.000 1.000
GS_2 12 0.977 59 171 0.990 0.977
GS_3 1 3 1.000 46 50 1.000 1.000
GS_4 1 4 1.000 36 40 1.000 1.000
GS_5 1 5 0.900 38 27 0.993 0.900
GS_6 1 8 1.000 28 20 1.000 1.000
GS_7 1 6 0.725 41 29 0.973 0.725



col-specificity col-PPV col-NPV row-accuracy

GS_1 1 1 1.000 0.853
GS_2 1 1 0.983 0.960
GS_3 1 1 1.000 0.990
GS_4 1 1 1.000 0.975
GS_5 1 1 0.992 0.960
GS_6 1 1 1.000 0.975
GS_7 1 1 0.970 0.943
row-sensitivity row-specificity row-PPV row-NPV
GS_1 0.764 1.000 1.000 0.718
GS_2 0.787 1.000 1.000 0.953
GS_3 0.920 1.000 1.000 0.989
GS_4 0.825 0.992 0.917 0.981
GS_5 0.867 0.968 0.684 0.989
GS_6 0.950 0.976 0.679 0.997
GS_7 0.725 0.967 0.707 0.969

Again to view the code of the function, you could:

> showMethods (analyzeClust)
> getMethod ("analyzeClust", signature (clustObj="iBBiG", GS="iBBiG"))

The structure of iBBiG differs from BiClust in that it contains ClusterScores. ClusterScores are the scores for
each module. RowScoreNumber are the scores for each row in the cluster. Seeddata is a copy of binMat.

> str (binMat)

Formal class 'iBBiG' [package "iBBiG"] with 8 slots

..@ Seeddata : num [1:400, 1:400] 1 111110011
.— attr(*, "dimnames")=List of 2
.$ : chr [1:400] "sig_1" "sig_2" "sig_ 3" "sig_4"
.$ : chr [1:400] "cov_1" "cov_2" "cov_3" "cov_4"
.@ RowScorexNumber: num[0 , 0 ]
.@ Clusterscores : num(0)
.@ Parameters :List of 3
..$ designMatrix: num [1:7, 1:6] 251 51 1 46 81 106 151 51 251 1
.— attr(*, "dimnames")=List of 2
.$ ¢ chr [1:7] "M1" "M2" "M3" "M4"
.S ¢+ chr [1:6] "startC" "startR" "endC" "endR"
..$ nRow : num 400
. ..$ nCol : num 400
..@ RowxNumber : logi [1:400, 1:7] FALSE FALSE FALSE FALSE FALSE FALSE
..Q@ NumberxCol : logi [1:7, 1:400] FALSE FALSE TRUE FALSE FALSE FALSE
..@ Number : int 7
.@ info : list ()

> RowScorexNumber (res) [1:2, ]

M1M?2 M3M4M5M6MT7M8MI9M 10
sig_1 0 0 29.12712 0 0 0 0 0 0 0
sig_2 0 0 33.04621 0 0 0 0 0 0 0

> Clusterscores (res)



M1 M 2 M 3 M 4 M 5
1909.84107 2853.28976 763.99947 569.15794 278.97986
M 6 M 7 M 8 M 9 M 10
233.88689 62.29905 209.02724 70.18558 48.75826

> Seeddata(res) [1:2,1:2]

cov_1l cov_2
sig_1 1 1
sig_2 1 0

There are also the slots for info and Parameters which can contain additional user-entered information about
the analysis. We can subset or reorder the results like so:

> res[1:3]

An object of class iBBiG
Number of Clusters found: 3

First 3 Cluster scores and sizes:

M 1 M 2 M 3
Cluster Score 1909.841 2853.29 763.9995
Number of Rows: 191.000 59.00 46.0000
Number of Columns: 25.000 171.00 50.0000

> res[c(4,2,1)]

An object of class iBBiG
Number of Clusters found: 3

First 3 Cluster scores and sizes:

M 4 M 2 M 1
Cluster Score 569.1579 2853.29 1909.841
Number of Rows: 36.0000 59.00 191.000

Number of Columns: 40.0000 171.00 25.000
> res[1, drop=FALSE]

An object of class iBBiG

There was one cluster found with Score 1909.841 and
191 Rows and 25 columns

3 Using biclust functions

An object from iBBiG extends the class biclust and can therefore use methods available to a biclust object. For
example, there are several plot functions in BiClust

> class (res)
> par (mfrow=c(2,1))
> drawHeatmapZ (res@Seeddata, res, number=4)



> biclustmember (res, res@Seeddata)
> biclustbarchart (res@Seeddata, Bicres=res)
> plotclust (res, res@Seeddata)

Statistical measures of biclustering performance including the Chia and Karuturi Function, Coherence mea-
sures and F Statistics are available within the biclust R packages.

There are function to process data, binarize or discretize data. For example, given gene expression data we
can binarize or discretize the data matrix as follows and this can be input into iBBiG

data (BicatYeast)

BicatYeast[1:5,1:5]

binarize (BicatYeast[1:5,1:5], threshold=0.2)
discretize (BicatYeast[1:5,1:5])

vV V. Vv VvV

The sub-matrices of each cluster can be extracted from the original matrix, using the function bicluster

> Modules<-bicluster (res@Seeddata, res, 1:3)
> str (Modules)

List of 3
$ Biclusterl: num [1:191, 1:25] 1 1 1 11 11111
.— attr(x, "dimnames")=List of 2

.$ ¢ chr [1:191] "sig 51" "sig 52" "sig_ 53" "sig_54"
.. .S : chr [1:25] "cov_251" "cov_252" "cov_253" "cov_254"
$ Bicluster2: num [1:59, 1:171] 01 1 1 110011
.— attr(x, "dimnames")=List of 2
.$ ¢ chr [1:59] "sig_251" "sig_252" "sig_ 253" "sig_254"
.. .S ¢ chr [1:171] "cov_51" "cov_52" "cov_53" "cov_54"
$ Bicluster3: num [1:46, 1:50] 1 1 1 1 110011

.— attr(x, "dimnames")=List of 2
.$ : chr [1:46] "sig_1" "sig_2" "sig_3" "sig_4"
.$ : chr [1:50] "cov_1" "cov_2" "cov_3" "cov_4"

> Modules|[[1]][1:3,1:4]

cov_251 cov_252 cov_253 cov_254

sig_51 1 1 1 1
sig_52 1 1 1 1
sig_53 1 1 1 1

To write results to a file use the following:

> writeBiclusterResults ("Modules.txt", res, bicName="Output from iBBiG with default pa.

>

4 Session Info

* R version 4.3.0 RC (2023-04-18 r84287), x86_64-pc—-linux—-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

10



e Time zone: America/New_York

* TZcode source: system (glibc)

* Running under: Ubuntu 22.04.2 LTS

* Matrix products: default

* BLAS: /home/biocbuild/bbs-3.18-bioc/R/1ib/1libRblas.so

¢ LAPACK: /usr/1ib/x86_64-1linux—-gnu/lapack/liblapack.s0.3.10.0

* Base packages: base, datasets, grDevices, graphics, grid, methods, stats, utils

* Other packages: MASS 7.3-59, biclust 2.0.3, colorspace 2.1-0, iBBiG 1.45.0, lattice 0.21-8

* Loaded via a namespace (and not attached): R6 2.5.1, Repp 1.0.10, additivityTests 1.1-4.1, ade4 1.7-22,
class 7.3-21, cli 3.6.1, compiler 4.3.0, dplyr 1.1.2, fansi 1.0.4, flexclust 1.4-1, generics 0.1.3,
ggplot2 3.4.2, glue 1.6.2, gtable 0.3.3, lifecycle 1.0.3, magrittr 2.0.3, modeltools 0.2-23, munsell 0.5.0,
parallel 4.3.0, pillar 1.9.0, pkgconfig 2.0.3, purrr 1.0.1, rlang 1.1.0, scales 1.2.1, stats4 4.3.0, tibble 3.2.1,
tidyr 1.3.0, tidyselect 1.2.0, tools 4.3.0, utf8 1.2.3, vctrs 0.6.2, xtable 1.8-4

References

11



	iBBiG
	Application to simulated dataset
	Using biclust functions
	Session Info

