Image Analysis with beadarray

Mike Smith

April 25, 2023

Introduction

From version 2.0 beadarray provides more flexibility in the processing of array
images and the extraction of bead intensities than its predecessor. In the past
intensity extraction from array images by beadarray attmepted to emulated
that performed by Illumina, with minimal opportunities for deviation from this.
Whilst the default approach taken in beadarray is still to emulated lllumina,
we have made each step modular, in order to allow greater flexibility for the
user. This vignette is designed to show how one can read the TIFF images from
the BeadArray scanner and implement alternative feature intensity extraction
algorithms.

Reading bead-level data into beadarray

1.1

Standard lllumina Image Processing

The first step in a pipeline for image processing is to read both the TIFF image
and the bead-level text file. The text file contains the identities of each bead, as
well as the bead-centre coordinates. The image processing methods contained
within beadarray use these coordinates as seed points for intensity extraction,
although one can conceive of approaches where bead-centres are calculated
seperately, prior to intensity extraction. However, even with such an approach
the Probe ID for each bead will need to be extracted from the .txt file.

tiff <- readTIFF();
data <- readBeadLevelTextFile();

The standard method employed by Illumina’s scanner for calculating bead in-
tensity is a four step process, described in Kuhn et al [?]. It can be summarized
as:

= Calculate background value

Image Analysis with beadarray

= Sharpen image
= Calculate foreground value
= Subtract background for foreground to give final intensity

If the function readIllumina() is called with useImages = TRUE then inten-
sities are extracted using code that gives a very close emulation of that used
by lllumina. If one wished to perform this calcuation themselves (outside of
readIlluminal()), it can be done using the following code.

bg <- illuminaBackground(tiff, data[,3:4]);
tiffSharp <- illuminaSharpen(tiff);

fg <- illuminaForeground(tiffSharp, datal,3:4]);
finallIntensity <- fg - bg;

Each of the functions above take a matrix representing the pixel values from the
TIFF image as their first argument. The background and foreground algorithms
additionally take a two column matrix containing the coordinates of the bead
centres. If one wished to calculate intensities for only a subset of the beads
then supplying only the appropriate bead-centres in this step would achieve this.

After calculating intensties they need to be inserted into a beadlLevelData ob-
ject. The code below shows how to create a new object and insert intensity
values. However, this approach creates an empty beadlLevelData object, which
will be lacking any information except that which the user manually inserts.

BLData <- new(Class = "beadlLevelData");
BLData <- insertBeadData(BLData, array = 1, what = "Grn", data = finallIntensity)

An easier alternative to creating your own beadLevelData object is to use the
function readIllumina() to read the data as described in the main vignette.
This ensures that any available data (such as sample IDs, scanner metrics, grid
sizes etc.) are read in and stored. One can then choose to overwrite the values
generated by readIllumina(), or store alternative intensities alongside them.

The example below first reads the data using the standard arguments to readIl
Lumina(), which will extract the intensities from the .txt file. The second step
overwrites those intensities with those we calculated previously (which should
be very similar). The final command creates a new entry in the beadLevelData
object (refered to as ‘GrnLog’), that stores the log transform of the values we
calculated earlier. In this way the user can store a variety of intensity values
if they wish to experiment with alternative forms of background subtraction,
gradient removal etc.

Image Analysis with beadarray

1.2

BLData <- readIllumina();
BLData <- insertBeadData(BLData, array
BLData <- insertBeadData(BLData, array

1, what

"GrnLog", data =

Alternative Methods

The examples above have focused on applying the same intensity extraction
algorithms that are employed by Illumina. However, one may wish to employ
an alternative algorithm to test its performance. The example below imple-
ments an alternative method of calculating the background intensity values, as
recommended by Smith et al [?].

bg <- medianBackground(tiff, datal[,3:4]);

We can then use the new background intensities in the same way as previously,
before inserting them into the beadlLevelData object.

Parallel Processing

We have included some support for parallel processing in the functions to per-
form sharpening of the image and the two background calculation methods.
These can offer some increase in throughput when one is using a single com-
puter to analyse a small number of samples. However if one is dealing with a
large number of arrays then there are probably more efficient mechanisms to
achieve speedup, such as reading seperate chips on multiple machines (or R
sessions) and combining the data after they have been read.

This multicore support is implemented at the C level using the OpenMP library.
Unfortunately adding support for this generates a warning on Bioconductor, so
support needs to be added manually and the package build from source. The
procedure is slightly different for users on Linux and Windows machines.

Linux users should create a file called Makevars in the beadarray/src directory
and add the following two lines before building the package from source.

PKG_CFLAGS=-fopenmp
PKG_LIBS=-1gomp

Windows users should create a file called Makevars.win in the beadarray/src
directory and add the following two lines before building the package from
source.

1, what = "Grn", data = finalIntensity)

log2(finalIntensity))

Image Analysis with beadarray

PKG_CFLAGS=-fopenmp
PKG_LIBS=-1gomp -mthreads -1lpthreadGC2

3 Session Info

sessionInfo()

R version 4.3.0 RC (2023-04-18 r84287)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 22.04.2 LTS

##

Matrix products: default

BLAS: /home/biocbuild/bbs-3.18-bioc/R/1ib/libRblas.so

LAPACK: /usr/1lib/x86_64-1linux-gnu/lapack/liblapack.s0.3.10.0

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##t

time zone: America/New_York
tzcode source: system (glibc)

##t

attached base packages:

[1] stats graphics grDevices utils datasets methods
[7] base

#i#t

other attached packages:

[1] beadarray_2.51.0 hexbin_1.28.3 Biobase_2.61.0
[4] BiocGenerics_0.47.0 knitr_1.42

##

loaded via a namespace (and not attached):

[1] KEGGREST_1.41.0 gtable_0.3.3

[3] xfun_0.39 ggplot2_3.4.2

[5] lattice_0.21-8 vctrs_0.6.2

[7] tools_4.3.0 bitops_1.0-7

[9] generics_0.1.3 stats4_4.3.0

[11] tibble_3.2.1 fansi 1.0.4

[13] AnnotationDbi_1.63.0 RSQLite_2.3.1

Image Analysis with beadarray

##
##
##
##
##
##
##
##
##
##
H#i#t
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

[15]
[17]
[19]
[21]
[23]
[25]
[27]
[29]
[31]
[33]
[35]
[371]
[39]
[41]
[43]
[45]
[47]
[49]
[51]
[53]
[55]
[571]
[59]
[61]
[63]
[65]
[671]

highr_0.10
blob_1.2.4
S4Vectors_0.39.0
GenomeInfoDbData 1.2.10
stringr_1.5.0
munsell _0.5.0
GenomeInfoDb_1.37.0
RCurl_1.98-1.12
pillar_1.9.0
openssl1_2.0.6
limma_3.57.0

digest 0.6.31
dplyr_1.1.2
fastmap_1.1.1
colorspace_2.1-0
magrittr_2.0.3
scales_1.2.1
rmarkdown_2.21
httr_1.4.5
askpass_1.1

memoise 2.0.1
GenomicRanges_1.53.0
rlang_1.1.0
Rcpp_-1.0.10

DBI 1.1.3
base64_2.0.1
plyr_1.8.8

BeadDataPackR_1.53.0
pkgconfig_2.0.3
lifecycle_1.0.3
compiler_4.3.0
Biostrings_2.69.0
BiocStyle 2.29.0
htmltools_0.5.5
yaml_2.3.7
crayon_1.5.2
cachem_1.0.7
tidyselect_1.2.0
stringi_1.7.12
reshape2_1.4.4
grid_4.3.0

cli 3.6.1
utf8.1.2.3
bit64_4.0.5
XVector_0.41.0
bit_4.0.5
png_0.1-8
evaluate 0.20
IRanges_2.35.0
illuminaio 0.43.0
glue_1.6.2
BiocManager_1.30.20
R6_2.5.1
zlibbioc_1.47.0

	1 Reading bead-level data into beadarray
	1.1 Standard Illumina Image Processing
	1.2 Alternative Methods

	2 Parallel Processing
	3 Session Info

