Scale4C: an R/Bioconductor package for scale-space
transformation of 4C-seq data

Carolin Walter

April 25, 2023

Contents
I TInfroducfion| 1
1.1 Loading the package| 2
. rovided functionality| L Lo e e e 2
|2 Scale-space transformation of 4C-seq data) 2
2.1 Import of raw fragmentdatal 2
2.2 Initialisation of @ SCAledC ODJECT + .« « « v v v e e 3
[2.3 Smoothing, inflection points, fingerprint map, and singularities| 4
R4 Tesselation . - -« « o o o e e e e 8
3 Session Information| 10

1 Introduction

Scale4C uses Witkin’s scale-space filtering to describe a 4C-seq signal (chromosome conformation capture com-
bined with sequencing) qualitatively [Witkin, 1983]]. To this extend, the original data signal is smoothed with
Gauss kernels of increasing o ("sigma"). Inflection points (i.e. the borders between different features) can be
tracked through the resulting 2D matrix, or ’fingerprint map’, which shows the position of a fragment on the
x-axis and a range of smoothing ¢ on the y-axis. Each entry in the matrix encodes whether there is an inflection
point at a certain position for a given o (and if so, whether it’s a switch from convex to concave or vice versa),
or not. In this context, a ’singularity’ is defined as a singular point in the fingerprint map, which means that both
borders of the corresponding feature are identical for the singular point’s ¢. In case of Gauss kernel smoothing,
this is only possible when a feature ("peak’ / *hill’ or ’valley’) appears or disappears, depending on whether the
smoothing factor o is decreased or increased [Witkin, 1983]]. Tracing singularities down their inflection point
contours through the fingerprint map allows for a precise localization of distorted, strongly smoothed features.
The singularities and localization information can then be transformed into a simple tree structure. Each singu-
larity hereby marks the point where three children spawn from one parent feature. Intuitively (and, in case of
Gauss kernels, correctly [Witkin, 1983 [Lee ef al., 2013]]), one would assume that a peak is surrounded by two
valleys and vice versa, and that when a smaller peak is smoothed out, the valleys around its former position will
form one new valley, and that’s what is reflected in the tree. All children of a chosen parent start at the same o,
however, their range of ¢ for which they persist can vary among the children.

These ternary trees can be visualized in a 2D tesselation map, which allows to assess prominent features with
a high degree of stability for multiple values of o visually.

1.1 Loading the package
After installation, the package can be loaded into R by typing
> library (Scale4cC)

into the R console.

1.2 Provided functionality

Scale4C requires the R-packages smoothie, IRanges, SummarizedExperiment and GenomicRanges.
This package provides the following basic functions for the scale-space transformation of 4C-seq data:

* calculateFingerprintMap: first of two central functions; computes the inflection points for the
signal when smoothed with different Gauss kernels

e findSingularities: second of two central functions; identifies and tracks singularities through the
fingerprint map

* plotTesselation: plots the final tesselation of the scale space for the given 4C-seq signal, as provided
by the singularities and tracking results

Optional functions include:

e importBasic4CseqgData: transforms Basic4Cseq’s fragment-based table output for use with Scale4C
* plotTraceback: plots the original fingerprint map and traceback results for a given 4C-seq signal

* plotInflectionPoints: plots the smoothed 4C-seq signal for one chosen o, with or without match-
ing inflection points

e outputScaleSpaceTree: outputs a GenomicRanges object, including the size (i.e. range of o) for
detected features, based on the singularity-derived scale-space tree data

In addition to the examples presented in this vignette, more detailed information on the functions’ parameters
and additional examples are presented in the corresponding manual pages.

2 Scale-space transformation of 4C-seq data

Similar to Basic4Cseq, Scale4C includes fetal liver data of [Stadhouders ef al., 2012] to demonstrate central
functions. Due to size limits and performance issues, only a subset of its near-cis fragment data is included.

2.1 Import of raw fragment data

Scale4C expects a GRanges object as input, which includes chromosome name, start, end, "reads" and "meanPo-
sition" (mean of start and end). If you have got an appropriate data frame or similar, the GenomicRanges contains
the relevant conversion functions.

Since Basic4Cseq already offers an output function for fragment data, albeit with more information than
Scale4C will ever need, a converter function is included in this package that can read Basic4Cseq’s output tables
and extract the relevant data. Per default, this is the fragment data within a certain distance from the viewpoint
of the experiment.

> csvFile <- system.file("extdata", "liverData.csv", package="Scale4C")

> liverReads <- importBasic4CseqgData(csvFile, viewpoint = 21160072,
viewpointChromosome = "chrl0", distance = 1000000)

> head(liverReads)

GRanges object with 6 ranges and 2 metadata columns:

segnames ranges strand | reads meanPosition
<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chrl0 21129612-21129613 * 3074 21129612
[2] chrl0 21132470-21132471 * 400 21132470
[3] chrl0 21132477-21132478 * | 2 21132478
[4] chrl0 21141442-21141443 * | 3488 21141442
[5] chrl0 21143414-21143415 * | 1295 21143414
[6] chrl0 21143421-21143422 * | 10 21143422

seginfo: 1 sequence from an unspecified genome; no seglengths

Note: The system.file() expression is used to locate the example data from Stadhouders et al. For custom
data, simply entering the full or relative path as a string is sufficient, e.g.
csvFile <- "../myFolder/myFragmentData.csv".

2.2 Initialisation of a Scale4C object

As soon as the data is available in R, we can create the raw Scale4C object.

> liverData = Scaled4C(rawData = liverReads, viewpoint = 21160072, viewpointChromosome

> liverData

4C-seq scale space data

Type: ScaledC

Viewpoint: chrl0 : 21160072
Number of total fragments: 286

Points of interest: O
Maximum sigma of fingerprint map: -1
Number of singularities: O

While the viewpoint of a 4C-seq experiment is usually clearly visible as its characteristic overrepresentation
causes a visible peak in the data, including further reference points into near-cis plots may facilitate orientation.

> poiFile <- system.file("extdata", "vp.txt", package="Scaled4C")

> pointsOfInterest (liverData) <- addPointsOfInterest (liverData,
read.csv(poiFile, sep = "\t", stringsAsFactor = FALSE))

> head(pointsOfiInterest (l1iverData))

GRanges object with 3 ranges and 3 metadata columns:

segnames ranges strand | name colour index
<Rle> <IRanges> <Rle> | <character> <character> <integer>

[1] chrl0 21160072-21160073 * P grey20 17
[2] chrl0 21197709-21197710 * | -36 dodgerblue?2 37
[3] chrl0 21241139-21241140 * -81 firebrick3 49

segqinfo: 1 sequence from an unspecified genome; no seglengths

n

2.3 Smoothing, inflection points, fingerprint map, and singularities

Scale4C relies on two central functions to perform the scale-space transformation, calculateFingerprintMap
and findSingularities. To create a fingerprint map, we smooth the 4C-seq signal with increasing values
of o for the Gauss kernel.

plotInflectionPoints can plot the smoothed data for a given o, effectively showing a non-condensed
’slice’ of the scale space and fingerprint map.

1000
|
Pl

> plotInflectionPoints (liverData, 2, fileName = "", plotIP = FALSE)
3
o H
0 Y
o b
O — L
O L
< i
£ 8 :
> 37 |
g :
=
Z X
g g ;
g o]]
[)] N :

0
l

I I I I I I
0 50 100 150 200 250

position

For a o of 2, both marked elements aside from the viewpoint are clearly located on peak regions.

> plotInflectionPoints (liverData, 50, fileName = "", plotIP = FALSE)

5000
|
|_\

4000
- 4T

signal strength
3000

2000
|

1000

o
an
o

100 150 200 250

position

We can see that for a o of 50, the —36 element of Stadhouders et al. has been smoothed over; the former
peak is now located in a larger valley. The -81 element, however, is still located in a peak region.

Note: Since we haven’t actually calculated the fingerprint map and inflection points up to now, plot/P should
be set to FALSE.

In a similar manner, calculateScaleSpace and calculateFingerprintMap compute the whole
fingerprint map, up to a provided maximum square o. The fingerprint data is stored in the second assay of the
scaleSpace slot of a Scale4C object. findSingularities then identifies singular points of the inflection
point contours in scale-space [Witkin, 1983].

> scaleSpace (liverData) = calculateScaleSpace (liverData, maxSQSigma = 10)
> head(t (assay (scaleSpace (liverData), 1))[,1:5])

[,1] [,2] [,3] [,4] [,5]
[1,] 1817.604 900.245 853.245 2241.585 1463.276
[2,] 1338.876 1097.941 1177.597 1744.064 1405.163
[3,] 1065.672 1189.540 1312.445 1429.122 1274.580
[4,] 986.730 1174.141 1291.356 1322.246 1221.554
[5,] 946.830 1136.560 1246.503 1265.563 1199.958
[6,] 918.388 1097.436 1202.648 1227.564 1191.668

To speed up the examples, we use a small maximum o for the given example.

> liverData =
> singularities (liverData) =

calculateFingerprintMap (liverData,
findSingularities (liverData, 1,

maxSQSigma

= 10)

guessViewpoint =

FALSE)

The resulting fingerprint map and singularity trace for a maxSQSigma of 2000 are presented in figure[T]

2000
|
T

sigma square
1000 1500
I I

500
I

1 Mo my

s NS vg\vvﬁva\vyvvvﬂ

-

T T T T
0 50 100 150

position

Figure 1:

T
200

250 300

Fingerprint map with traced singularities for Stadhouders et al’s example liver data

[Stadhouders et al., 2012]]. The viewpoint wasn’t tracked, since the corresponding contours do not meet for
the chosen o, and the largest remaining singularity’s contours were not traced correctly.

There are two issues with the fingerprint map: First, the viewpoint is not identified, because the o used is far
too small for the inflection point contours to meet. Second, the largest identified singularity has wrong traces for
both the left and right side: the dark gray tracking line doesn’t match the corresponding inflection point curve or
contour. Both problems should be corrected before tesselation. We can easily manipulate the list of singularities
with R’s usual data frame options, and load the corrected list back into our Scale4C object.

> data (liverData)

> tail(singularities(liverData))

GRanges object

segnames ranges strand
<Rle> <IRanges> <Rle>
[1] chrl0 118-119 *

sgsigma
<numeric>
66

with 6 ranges and 4 metadata columns:

left right
<numeric> <numeric>
113 127

type
<character>
valley

[2] chrl0 159-160 * | 110 148 159 peak
[3] chrl0 124-125 x| 301 103 131 peak
[4] chrl0 83-84 * | 310 67 84 peak
[5] chrl0 185-186 * 485 173 192 peak
[6] chrl0 258-259 x| 1550 257 259 tracking problem
seginfo: 1 sequence from an unspecified genome; no seglengths

> # add viewpoint singularity

> singularities(liverData) = c(singularities(liverData), GRanges ("chrl0", IRanges (39,

"x", "sgsigma" = 2000, "left" = 40, "right" = 41, "type" = "peak"))

> # correct singularity's coordinates

> tempSingularities = singularities(liverData)

> tempSingularitiesS$Sleft[30] = 235

> tempSingularitiesSright [30] = 250

> tempSingularitiesStype[30] = "peak"

> singularities(liverData) = tempSingularities

> tail(singularities (liverData))

GRanges object with 6 ranges and 4 metadata columns:

segnames ranges strand | sgsigma left right type
<Rle> <IRanges> <Rle> | <numeric> <numeric> <numeric> <character>

[1] chrl0 159-160 * | 110 148 159 peak
[2] chrl0 124-125 * | 301 103 131 peak
[3] chrl0 83-84 * | 310 67 84 peak
[4] chrl0 185-186 x| 485 173 192 peak
[5] chrl0 258-259 x| 1550 235 250 peak
[6] chrl0 39-42 x| 2000 40 41 peak

seginfo: 1 sequence from an unspecified genome; no seqglengths

Note: There are a number of possible problems with the identification and the tracking of singularities.

First, singularities can simply be missed altogether. This typically happens for few singularities with a high
o, i.e. huge remaining basic features of the data, when the upper part of the contours are so stretched that holes
appear in the fingerprint map. While it is possible to adapt calculateFingerprintMap for a chance to
catch these features (cp. manual page), it is often faster to just add a singularity and its corresponding left and
right fragment at base ¢ level manually. If the 4C-seq data shows the typical peak at the viewpoint, this allows to
speed up the calculations for the fingerprint map a bit: By ignoring the viewpoint singularity at extremely high o
and using its contours to visually identify its left and right extent, we can stop at a reasonable o and get a feasible
tesselation. The example code above adds the viewpoint peak to the example data’s list of singularities.

Second, singularities can also be marked erroneously multiple times. This also tends to happen for very large
and frazzled contours; either adapting calculateFingerprintMap’s epsilon or simply deleting the false
singularities manually solves this problem. Identifying the correct singularity visually should be easy enough
with plotTraceback’s output plots: A valid singularity is located on the top of a inflection point curve, and
nowhere else.

Third, o = 1 tends to be difficult to trace due to the number of inflection point curves in close proximity and
identified singularities (part of which are usually wrong).

The results of the example’s fingerprint map and singularity search after correction are shown in figure 2]

If the data looks 'normal’, i.e. the 4C-seq signal creates mainly large *peaks’ in the fingerprint map, and no
large "valleys’ are present, it is also possible to stop at a lower ¢ and let the function combine the remaining single
contours by setting guessViewpoint = TRUE. In this case, it is assumed that all remaining curves in the fingerprint
map belong to peaks, and singularities are formed accordingly. Results for such a combination (o = 500) are
shown in figure[3]

42)

2000
|
P ——————— —

1500
I

sigma square
1000
I

o 4

KvV\v

N

Al

Yv\Avivvﬂvﬁ

0 50 100 150 200 250 300

position

Figure 2: Fingerprint map after manual correction: The viewpoint is added, and the remaining singularities for
Stadhouders et al.’s example liver data [Stadhouders ef al., 2012] are traced correctly.

2.4 Tesselation

If the fingerprint map and the singularity traceback appear to be satisfactory, the actual tesselation can be plotted.
The example plot in figure [f] uses different colours to depict peaks (brown) and valleys (blue). Each singularity
causes one parent feature to split into three child features (e.g. a single peak is split into peak-valley-peak);
plotTesselation per default marks the central feature of a trio in a darker shade, and adjacent in a lighter
one. Different colours for ’central’ and ’adjacent’ features allow for optical quality control of the tesselation, cp.
manual page for plotTesselation and [Witkin, 1983]|Lee et al., 2013|.

> # use pre-calculated example data with VP and correction
> data (liverDataVP)

> plotTesselation(liverDataVP, fileName = "")

The tesselation allows to assess the qualitative structure of the provided 4C-seq signal. The development
of features through different smoothing scales can be traced, and comparisons between samples regarding their
complexity become possible by comparing the number of singularities in a certain range of choice. Since 4C-
seq is about contact intensities and chromosomal interactions, the most interesting regions tend to be peaks that
persist for larger intervals of .

We can also output the underlying structure as a simple table, with or without ¢ log2 transformation. If

sigma square
300
I

200
I

100
I

Fo I L ﬂﬁ]\viﬁvﬂmﬂwv

T T T T T T
0 50 100 150 200 250 300

position

Figure 3: Fingerprint map for a smaller maximum o of 500 with automatically matched contours.

outputPeaks is set to FALSE, the output table shows a list of all central features, as specified by singularities in the
fingerprint map, and their corresponding adjacent left and adjacent right features with their range of persistence
in o, and left and right extent in fragments / genomic position. Otherwise, valleys are omitted from the output,
and the data is exported as GenomicRanges object. The features’ signals, i.e. the mean read counts for the
identified intervals, are also provided.

> head(outputScaleSpaceTree (liverDataVP, useLog = FALSE))

GRanges object with 6 ranges and 1 metadata column:

segnames ranges strand | total
<Rle> <IRanges> <Rle> | <numeric>

[1] chrl0 28-29 * | 3488
[2] chrl0 139-142 * | 73
[3] chrl0 195-197 * | 159
[4] chrl0 261-263 * 13
[5] chrl0 135-136 * | 275
[6] chrl0 230-231 * | 0

seginfo: 1 sequence from an unspecified genome; no seglengths

17
g_ [
= i
— [
a T
© —
n —]
N [
|
] v
o o
=
g 3 - |
= N (o] v
g LI}
T & -
E | TT1
2 © | — |
n | -
.y e
0 — | I
i
< |
~ !
)
= = |

1 100 200 295

fragments

Figure 4: Tesselation of the x-o-plane, as provided by the traced singularities in the fingerprint map. A slice at
o = 50 corresponds to the smoothed data plot from before, with the -36 element located in a valley and -81 at
the neighbouring peak.

References

[Stadhouders et al., 2012] Stadhouders, R., Thongjuea, S., et al (2012) Dynamic long-range chromatin interac-
tions control Myb proto-oncogene transcription during erythroid development, EMBO, 31, 986-999.

[Witkin, 1983] Witkin, A. (1983) Scale-space Filtering, Proceedings of the Eighth International Joint Confer-
ence on Artificial Intelligence - Volume 2, IJCAI’83, 1019-1022.

[Lee er al., 2013] Lee, J., Lee, U., Kim, B., et al. (2013) A computational method for detecting copy number
variations using scale-space filtering, BMC Bioinformatics, 14, 57.

3 Session Information

R version 4.3.0 RC (2023-04-18 r84287)
Platform: x86_64-pc-linux—-gnu (64-bit)

10

Running under: Ubuntu 22.04.2 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.18-bioc/R/1ib/1ibRblas.so
LAPACK: /usr/lib/x86_64-1linux—-gnu/lapack/liblapack.s0.3.10.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_GB
[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods base

other attached packages:

[1] Scale4dC_1.23.0 SummarizedExperiment_1.31.0 Biobase_2.61.0

[4] MatrixGenerics_1.13.0 matrixStats_0.63.0 GenomicRanges_1.53.0
[7] GenomeInfoDb_1.37.0 IRanges_2.35.0 S4Vectors_0.39.0
[10] BiocGenerics_0.47.0 smoothie_1.0-3

loaded via a namespace (and not attached):

[1] zlibbioc_1.47.0 Matrix_1.5-4 lattice_0.21-8

[4] GenomeInfoDbData_1.2.10 XVector_0.41.0 RCurl_1.98-1.12

[7] bitops_1.0-7 grid_4.3.0 DelayedArray_0.27.0
[10] compiler_4.3.0 tools_4.3.0

11

	Introduction
	Loading the package
	Provided functionality

	Scale-space transformation of 4C-seq data
	Import of raw fragment data
	Initialisation of a Scale4C object
	Smoothing, inflection points, fingerprint map, and singularities
	Tesselation

	Session Information

