BiocNeighbors 1.19.0
The BiocNeighbors package provides several algorithms for approximate neighbor searches:
These methods complement the exact algorithms described previously.
Again, it is straightforward to switch from one algorithm to another by simply changing the BNPARAM argument in findKNN and queryKNN.
We perform the k-nearest neighbors search with the Annoy algorithm by specifying BNPARAM=AnnoyParam().
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
fout <- findKNN(data, k=10, BNPARAM=AnnoyParam())
head(fout$index)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 8548 8170 1147 2375 4570 684 6395 1089 2464 7626
## [2,] 9859 5164 3304 7042 7726 6900 6937 566 9319 6181
## [3,] 8638 499 2255 6781 2777 4380 5732 7421 6767 1527
## [4,] 5907 2001 6869 1136 9618 5919 7726 4640 4397 3815
## [5,] 3415 6838 7410 8508 6251 465 5413 6881 3997 4810
## [6,] 2381 9467 4462 1380 3608 141 4134 9900 58 5327
head(fout$distance)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0.9517188 1.0120275 1.0256116 1.0384012 1.0534431 1.0741335 1.0760807
## [2,] 0.9980683 1.0180894 1.0671076 1.0690955 1.0722303 1.1014323 1.1182870
## [3,] 0.8836277 0.9496791 1.0099357 1.0553443 1.0617758 1.0766279 1.1169646
## [4,] 0.8691962 0.8869227 0.9781138 0.9937236 1.0215335 1.0309957 1.0520850
## [5,] 0.7470980 1.0302471 1.0302728 1.0370272 1.0470924 1.0479103 1.0742189
## [6,] 0.9002295 0.9331822 0.9404964 0.9412764 0.9725459 0.9740628 0.9899004
## [,8] [,9] [,10]
## [1,] 1.0766690 1.0841007 1.088716
## [2,] 1.1272091 1.1478179 1.151226
## [3,] 1.1214929 1.1259019 1.130085
## [4,] 1.0559744 1.0585030 1.064524
## [5,] 1.0766065 1.0821961 1.083857
## [6,] 0.9969236 0.9985535 1.000302
We can also identify the k-nearest neighbors in one dataset based on query points in another dataset.
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
qout <- queryKNN(data, query, k=5, BNPARAM=AnnoyParam())
head(qout$index)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 2782 7040 6627 4164 9759
## [2,] 6882 5572 8192 8435 9958
## [3,] 3665 4131 4929 8348 548
## [4,] 1281 5664 4083 1462 5347
## [5,] 7147 1255 9236 6443 522
## [6,] 3201 6894 6181 9825 1653
head(qout$distance)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.8731615 0.9428365 1.0173877 1.0224209 1.0616685
## [2,] 1.0842409 1.0942212 1.0975769 1.1120467 1.1421762
## [3,] 0.8207767 0.8316743 0.8610218 0.8639438 0.9182987
## [4,] 0.8928744 0.9140493 1.0614805 1.0651276 1.0817591
## [5,] 0.8204831 0.9043658 0.9282364 0.9384299 0.9424062
## [6,] 0.8330854 0.9642053 0.9649779 0.9775202 1.0219027
It is similarly easy to use the HNSW algorithm by setting BNPARAM=HnswParam().
Most of the options described for the exact methods are also applicable here. For example:
subset to identify neighbors for a subset of points.get.distance to avoid retrieving distances when unnecessary.BPPARAM to parallelize the calculations across multiple workers.BNINDEX to build the forest once for a given data set and re-use it across calls.The use of a pre-built BNINDEX is illustrated below:
pre <- buildIndex(data, BNPARAM=AnnoyParam())
out1 <- findKNN(BNINDEX=pre, k=5)
out2 <- queryKNN(BNINDEX=pre, query=query, k=2)
Both Annoy and HNSW perform searches based on the Euclidean distance by default.
Searching by Manhattan distance is done by simply setting distance="Manhattan" in AnnoyParam() or HnswParam().
Users are referred to the documentation of each function for specific details on the available arguments.
Both Annoy and HNSW generate indexing structures - a forest of trees and series of graphs, respectively -
that are saved to file when calling buildIndex().
By default, this file is located in tempdir()1 On HPC file systems, you can change TEMPDIR to a location that is more amenable to concurrent access. and will be removed when the session finishes.
AnnoyIndex_path(pre)
## [1] "/tmp/RtmpwATJTH/file3219755a64e34.idx"
If the index is to persist across sessions, the path of the index file can be directly specified in buildIndex.
This can be used to construct an index object directly using the relevant constructors, e.g., AnnoyIndex(), HnswIndex().
However, it becomes the responsibility of the user to clean up any temporary indexing files after calculations are complete.
sessionInfo()
## R version 4.3.0 RC (2023-04-18 r84287)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocNeighbors_1.19.0 knitr_1.42 BiocStyle_2.29.0
##
## loaded via a namespace (and not attached):
## [1] cli_3.6.1 rlang_1.1.0 xfun_0.39
## [4] jsonlite_1.8.4 S4Vectors_0.39.0 htmltools_0.5.5
## [7] stats4_4.3.0 sass_0.4.5 rmarkdown_2.21
## [10] grid_4.3.0 evaluate_0.20 jquerylib_0.1.4
## [13] fastmap_1.1.1 yaml_2.3.7 bookdown_0.33
## [16] BiocManager_1.30.20 compiler_4.3.0 codetools_0.2-19
## [19] Rcpp_1.0.10 BiocParallel_1.35.0 lattice_0.21-8
## [22] digest_0.6.31 R6_2.5.1 parallel_4.3.0
## [25] bslib_0.4.2 Matrix_1.5-4 tools_4.3.0
## [28] BiocGenerics_0.47.0 cachem_1.0.7