Package ‘plotGrouper’

June 4, 2023

Title Shiny app GUI wrapper for ggplot with built-in statistical
analysis

Version 1.19.0

Description A shiny app-based GUI wrapper for ggplot with built-in statistical
analysis. Import data from file and use dropdown menus and checkboxes to
specify the plotting variables, graph type, and look of your plots.
Once created, plots can be saved independently or stored in a report that
can be saved as a pdf. If new data are added to the file, the report can be
refreshed to include new data. Statistical tests can be selected and added to
the graphs. Analysis of flow cytometry data is especially integrated with
plotGrouper. Count data can be transformed to return the absolute
number of cells in a sample (this feature requires inclusion of the number of
beads per sample and information about any dilution performed).

Depends R (>=3.5)

Imports ggplot2 (>=3.0.0), dplyr (>= 0.7.6), tidyr (>= 0.2.0), tibble
(>=1.4.2), stringr (>= 1.3.1), readr (>= 1.1.1), readxl (>=
1.1.0), scales (>= 1.0.0), stats, grid, gridExtra (>= 2.3), egg
(>=0.4.0), gtable (>=0.2.0), ggpubr (>= 0.1.8), shiny (>=
1.1.0), shinythemes (>= 1.1.1), colourpicker (>= 1.0), magrittr
(>=1.5), Hmisc (>=4.1.1), rlang (>= 0.2.2)

Suggests knitr, htmltools, BiocStyle, rmarkdown, testthat

VignetteBuilder knitr

biocViews ImmunoOncology, FlowCytometry, GraphAndNetwork,
StatisticalMethod, Datalmport, GUI, MultipleComparison

URL https://jdgagnon.github.io/plotGrouper/

BugReports https://github.com/jdgagnon/plotGrouper/issues
License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.0

git_url https://git.bioconductor.org/packages/plotGrouper

1

https://jdgagnon.github.io/plotGrouper/
https://github.com/jdgagnon/plotGrouper/issues

git_branch devel

git_last commit b8df35b
git_last_commit_date 2023-04-25
Date/Publication 2023-06-04
Author John D. Gagnon [aut, cre]

Maintainer John D. Gagnon <john.gagnon.42@gmail.com>

R topics documented:

gplot

IOt . . L e e 2
organizeData L e 4
plotGrouper 5
readData 6
readData_example 6
Do>T0 .« oo 7

Index 8

gplot A function to create a grouped plot and return a table grob.
Description

This function allows you to create a grouped plot and return a table grob. It takes a tidy dataset
containing sample replicate values for at least one variable, a column organizing each replicate into
the proper comparison group, and a column that groups the variables to be plotted. Additional
arguments allow for the re-ordering of the variables and the comparisons being ploted, selection of
the type of graph to display (e.g., bar graph, boxplot, violin plot, points, statistical summary, etc...),
as well as other aesthetics of the plot.

Usage

gplot(dataset = NULL, comparison = NULL, group.by = NULL,

levs = TRUE, val = "value", geom = c("bar"”, "errorbar”, "point",
"stat", "seg"), p = "p.signif", ref.group = NULL,

p.adjust.method = "holm", comparisons = NULL, method = "t.test",
paired = FALSE, errortype = "mean_sdl”, y.lim = NULL,

y.lab = NULL, trans.y = "identity"”, x.lim = c(NA, NA),

expand.y = c(@, @), x.lab = NULL, trans.x = "identity",

sci = FALSE, angle.x = FALSE, levs.comps = TRUE,

group.labs = NULL, stats = FALSE, split = TRUE, split_str = NULL,
trim = "none”, leg.pos = "top"”, stroke = 0.25, font_size = 9,
size = 1, width = 0.8, dodge = 0.8, plotWidth = 30,

plotHeight = 4@, shape.groups = c(19, 21),

color.groups = c("black”, "black"), fill.groups = c("#444444" NA,
"#A33838"))

gplot

Arguments

dataset
comparison
group.by
levs

val

geom

p

ref.group

p.adjust.method

comparisons

method
paired
errortype
y.lim
y.lab
trans.y
x.lim
expand.y
x.lab
trans.x
sci
angle.x
levs.comps
group. labs
stats
split
split_str

trim

leg.pos
stroke
font_size

size

Define your data set which should be a gathered tibble

Specify the comparison you would like to make (e.g., Genotype)
Specify the variable to group by (e.g., Tissue).

Specify the order of the grouping variables

Specify column name that contains values (optional)

Define the list of geoms you want to plot

Specify representation of pvalue (p.signif = astrisk representation of the raw p
value; p.format = ’p = 0.05’; p.adj = adjusted p-value; p.adj.signif = astrisk
representation of the adjusted p value)

Specify a reference group to compare all other comparisons to

Method used for adjusting the pvalue

Specify which of the available comparisons within your data you would like to
plot

Specify the statistical test to be used

Specify whether or not the statistical comparisons should be paired
Specify the method of statistical error to plot

Specify the min and max values to be used for the y-axis

Specify a custom y-axis label to use

Specify the transformation to perform on the dependent variable
Specify the min and max values to be used for the x-axis

Specify values to expand the y-axis

Specify a custom x-axis label to use

Specify the transformation to perform on the independent variable
Specify whether or not to display the dependent variable using scientific notation
Specify whether or not to angle the x-axis text 45deg

Specify the order in which to plot the comparisons

Specify custom labels for the independent variables

Specify whether or not to output the statistics table

Specify whether or not to split the x-axis label text

Specify the string to split the x-axis label text by; uses regex

Specify the string to trim text from the right side of the x-axis label text; uses
regex

Specify where to place the legend
Specify the line thickness to use
Specify the font size to use

Specify the size of the points to use

width

dodge
plotWidth
plotHeight
shape.groups
color.groups

fill.groups

Value

organizeData

Specify the width of groups to be plotted

Specify the width to dodge the comparisons by
Specify the length of the x-axis in mm

Specify the length of the y-axis in mm

Specify the default shapes to use for the comparisons
Specify the default colors to use for the comparisons

Specify the default fills to use for the comparisons

Table grob of the plot

Examples

iris %>% dplyr::mutate(Species = as.character(Species)) %>%
dplyr: :group_by(Species) %>%

non

dplyr::mutate(Sample = paste@(Species, "_", dplyr::row_number()),

Sheet = "iris") %>%

dplyr::select(Sample, Sheet, Species, dplyr::everything()) %>%
tidyr::gather(variable, value, -c(Sample, Sheet, Species)) %>%
dplyr::filter(variable == "Sepal.lLength") %>%

plotGrouper: :gplot(

comparison = "Species”,

group.by = "variable”,

shape.groups = ¢(19,21,17),

color.groups = c(rep("black”,3)),

fill.groups = c("black”,"#EQ16BE", "#1243C9")) %>%
gridExtra::grid.arrange()

organizeData

A function to organize a tibble into tidy format and perform count
transformations

Description

This function will organize a tibble into tidy format and perform count transformations if appropri-
ate columns are specified.

Usage

organizeData(data = NULL, exclude = NULL, comp = NULL,
comps = NULL, variables = NULL, id = NULL, beadColumn = NULL,
dilutionColumn = NULL)

plotGrouper 5

Arguments
data A tibble
exclude A list of columns to exclude from gather
comp the name of comparison column
comps A vector of names of the comparisons
variables A vector of the variables to be plotted
id The name of unique identifier column
beadColumn The column name that has total number of beads/sample

dilutionColumn The column name that has dilution factor for each sample 1/x

Value

Tibble in tidy format based on columns chosen to be excluded. Count data will be transformed if
appropriate columns are present.

Examples

iris %>% dplyr::mutate(Species = as.character(Species)) %>%
dplyr: :group_by(Species) %>%
dplyr::mutate(Sample = paste@(Species,
Sheet = "iris") %>%
dplyr::select(Sample, Sheet, Species, dplyr::everything()) %>%
plotGrouper: :organizeData(data = .,

non

, dplyr::row_number()),

exclude = c("Sample”, "Sheet"”, "Species"),

comp = "Species”,

comps = c("setosa”, "versicolor”, "virginica"),

variables = "Sepal.Length”,

id = "Sample”,

beadColumn = "none",

dilutionColumn = "none")

plotGrouper A function to run the plotGrouper shiny app

Description

This function runs the plotGrouper app

Usage

plotGrouper(...)

Arguments

Any argument that you can pass to shiny::runApp

6 readData_example

Value

Runs the plotGrouper shiny app.

Examples

plotGrouper()

readData A function to read an excel file and combine its sheets into a single
dataframe.

Description

This function will read an excel file and combine its sheets into a single dataframe.

Usage

readData(file = NULL, sheet = NULL)

Arguments
file Takes an excel file to be read from
sheet Takes a vector of sheets to be read
Value

Tibble assembled from the sheets selected from the file

Examples

datasets <- readData_example("iris.x1lsx")
readData(datasets, "iris")

readData_example Get path to readData example

Description
readData comes bundled with a example files in its ‘inst/applications/www ‘ directory. This function
makes them easy to access.

Usage

readData_example(path = NULL)

%>% 7

Arguments

path Name of file. If ‘NULL*, the example files will be listed.

Value

Located example excel file in package

Examples
readData_example(path = "iris.xlsx")
%>% Pipe graphics
Description

Like dplyr, ggvis also uses the pipe function, %>% to turn function composition into a series of
imperative statements.

Arguments

lhs, rhs A visualisation and a function to apply to it

Examples

Instead of

dplyr::mutate(dplyr::filter(iris, Species == "versicolor”),
"Sample"” = paste@(Species, dplyr::row_number()))

You can write

dplyr::filter(iris, Species == "versicolor”) %>%

non

dplyr::mutate(”Sample” = paste@(Species, "_", dplyr::row_number()))

Index

* organizeData
organizeData, 4
+ readData
readData, 6
%>%, T

gplot, 2
organizeData, 4
plotGrouper, 5

readData, 6
readData_example, 6

	gplot
	organizeData
	plotGrouper
	readData
	readData_example
	>
	Index

