
Package ‘scMultiome’
June 6, 2023

Title Collection of Public Single-Cell Multiome (scATAC + scRNAseq)
Datasets

Version 1.0.0

Description Single cell multiome data, containing chromatin accessibility
(scATAC-seq) and gene expression (scRNA-seq) information analyzed with
the ArchR package and presented as MultiAssayExperiment objects.

License CC BY-SA 4.0

Depends R (>= 4.3.0), AnnotationHub, ExperimentHub,
MultiAssayExperiment, SingleCellExperiment,
SummarizedExperiment

Imports AzureStor, DelayedArray, GenomicRanges, HDF5Array, S4Vectors,
checkmate, methods, rhdf5

Suggests BiocGenerics, IRanges, Matrix, knitr, rmarkdown, rstudioapi,
testthat (>= 3.0.0), devtools, BiocStyle, ExperimentHubData

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

biocViews PackageTypeData, ExperimentHub, SingleCellData,
ExpressionData, SequencingData, Homo_sapiens_Data, CellCulture,
Tissue, GEO

git_url https://git.bioconductor.org/packages/scMultiome

git_branch RELEASE_3_17

git_last_commit 32d06c7

git_last_commit_date 2023-04-25

Date/Publication 2023-06-06

Author Xiaosai Yao [cre, aut] (<https://orcid.org/0000-0001-9729-0726>),
Aleksander Chlebowski [aut],
Aaron Lun [aut],

1

https://orcid.org/0000-0001-9729-0726

2 scMultiome-package

Shiqi Xie [ctb],
Tomasz Wlodarczyk [aut],
Natalie Fox [aut]

Maintainer Xiaosai Yao <xiaosai.yao@gmail.com>

R topics documented:

scMultiome-package . 2
assertHDF5 . 3
colonHealthy . 4
customClasses . 9
dummies . 10
fileOperations . 11
hematopoiesis . 13
listDatasets . 15
makeDataSetList . 16
prostateENZ . 16
reprogramSeq . 20
retrieve . 22
RGtools . 23
templates . 23
tfBinding . 24
writeSparseMatrix . 32

Index 35

scMultiome-package scMultiome: Collection of Public Single-Cell Multiome (scATAC +
scRNAseq) Datasets

Description

Single cell multiome data, containing chromatin accessibility (scATAC-seq) and gene expression
(scRNA-seq) information analyzed with the ArchR package and presented as MultiAssayExperi-
ment objects.

Details

Single cell multiome data sets, paired and unpaired, were analyzed with the ArchR package in order
to obtain epiregulons. ArchR projects were converted to MultiAssayExperiment objects.

The creation of all datasets is described in detail in respective help files. Run listDatasets()
to view a list of available data sets or see Datasets below. See ?<DATASET_NAME> for details on
particular data sets, e.g. ?prostateENZ.

assertHDF5 3

Datasets

• colonHealthy: Single-cell analysis of samples from healthy human colon

• hematopoiesis: scATAC-seq and unpaired scRNA-seq of hematopoetic cells

• prostateENZ: LNCaP Cells Treated with Enzalutamide

• reprogramSeq: Reprogram-seq of LNCaP cells

• tfBinding_hg19_atlas: TF Binding Info hg19 (ChIP-Atlas and ENCODE)

• tfBinding_hg19_cistrome: TF Binding Info hg19 (CistromeDB and ENCODE)

• tfBinding_hg38_atlas: TF Binding Info hg38 (ChIP-Atlas and ENCODE)

• tfBinding_hg38_cistrome: TF Binding Info hg38 (CistromeDB and ENCODE)

• tfBinding_mm10_atlas: TF Binding Info mm10 (ChIP-Atlas and ENCODE)

• tfBinding_mm10_cistrome: TF Binding Info mm10 (CistromeDB and ENCODE)

Author(s)

Maintainer: Xiaosai Yao <xiaosai.yao@gmail.com> (ORCID)

Authors:

• Aleksander Chlebowski <aleksander.chlebowski@contractors.roche.com>

• Aaron Lun <lun.aaron@gene.com>

• Tomasz Wlodarczyk <tomasz.wlodarczyk@contractors>

• Natalie Fox <natalie.fox@roche.com>

Other contributors:

• Shiqi Xie <xie.shiqi@gene.com> [contributor]

assertHDF5 check if a file is a valid HDF5 file

Description

Check if a file path argument points to an non-corrupt HDF5 file.

Usage

assertHDF5(path)

Arguments

path path to file to test

Details

Compares the first 8 bytes of a file to those of the standard HDF5 file header.

https://orcid.org/0000-0001-9729-0726

4 colonHealthy

Value

Returns invisible path if check is successful, otherwise signals an error.

Further development

The HDF5 file header contains 8 bytes, which hold specific meanings. Currently the function only
tests that the header of the file specified by path is identical to a healthy HDF5 file and signals a
general error if that is not the case. Reporting specific types of corruption can be implemented.

Author(s)

Aleksander Chlebowski

References

http://web.ics.purdue.edu/~aai/HDF5/html/H5.format.html#BootBlock

Examples

fileName1 <- tempfile(fileext = ".h5")
rhdf5::h5createFile(fileName1)
rhdf5::h5write(mtcars, fileName1, "mtcars")
rhdf5::h5closeAll()
fileName2 <- tempfile(fileext = ".csv")
write.csv(mtcars, fileName2)

assertHDF5(fileName1) # passes
Not run:
assertHDF5(fileName2) # fails

End(Not run)

colonHealthy Single-cell analysis of samples from healthy human colon

Description

ATACseq and RNAseq data obtained by the colon tissues analysis. Samples were collected from
adult human donors.

Usage

colonHealthy(
metadata = FALSE,
experiments = c("TileMatrix", "GeneIntegrationMatrix", "GeneScoreMatrix",
"MotifMatrix", "PeakMatrix")

)

http://web.ics.purdue.edu/~aai/HDF5/html/H5.format.html#BootBlock

colonHealthy 5

Arguments

metadata logical flag specifying whether to return data or metadata only

experiments character vector of matrices to return; see Format

Format

MultiAssayExperiment obtained from an ArchR project. Annotated with the Hg38 genome build.
Contains the following experiments:

• TileMatrix: SingleCellExperiment with 6062095 rows and 59231 columns

• GeneIntegrationMatrix: SingleCellExperiment with 19020 rows and 59231 columns

• GeneScoreMatrix: SingleCellExperiment with 24919 rows and 59231 columns

• MotifMatrix: SingleCellExperiment with 870 rows and 59231 columns

• PeakMatrix: SingleCellExperiment with 406946 rows and 59231 columns

Value

MultiAssayExperiment made up of SingleCellExperiments with assays stored as DelayedMatrix
objects. If metadata = TRUE, an ExperimentHub object listing this data set’s metadata.

Data preparation

scATAC data was downloaded from Gene Expression Omnibus (acc. no. GSE165659) and analyzed
with SingleCell ATAC - 10X pipeline v2.0.0 scRNAseq data in form of Seurat objects was down-
loaded from https://drive.google.com/drive/folders/12j9ufV1L0uWbUlab-VoXRznDLKDO7PQ. In
case of future change in the data storage location, it will be updated in the readme file in project’s
Github repository (https://github.com/winstonbecker/scCRC_continuum)

Downstream analysis was performed with the ArchR package v. 1.0.2:

library(ArchR)
library(parallel)

catlas_files <- <FRAGMENT_FILES>
outputDir <- <OUTPUT_DIRECTORY>
arrow_files <- createArrowFiles(inputFiles = catlas_files, sampleNames = <SAMPLE_NAMES>)
doubScores <- addDoubletScores(input = arrow_files)

cerate ArchR project
project <- ArchRProject(arrow_files, outputDirectory = outputDir)

filtering out doublet cells
project <- filterDoublets(project)

add Iterative Latent Semantic Indexing reduced-dimensionality space
project <- addIterativeLSI(ArchRProj = project, useMatrix = "TileMatrix",

name = "IterativeLSI", clusterParams = list(resolution = c(0.2),
sampleCells = 10000, n.start = 10))

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165659

6 colonHealthy

batch correction
project <- addHarmony(ArchRProj = project, reducedDims = "IterativeLSI",

name = "Harmony", groupBy = "Sample")

project <- addClusters(input = project, reducedDims = "IterativeLSI",
method = "Seurat", name = "Clusters", resolution = 0.8)

add clusters after Harmony batch correction
project <- addClusters(input = project, reducedDims = "Harmony",

method = "Seurat", name = "Clusters_Harmony", resolution = 0.8)

add UMAP embedding
project <- addUMAP(ArchRProj = project, reducedDims = "IterativeLSI",

nNeighbors = 30, minDist = 0.5, name ="UMAP_LSI")

project <- addUMAP(ArchRProj = project, reducedDims = "IterativeLSI",
nNeighbors = 30, minDist = 0.5, name ="UMAP_Harmony")

add column with log base 10 of the fragment numbers
project <- addCellColData(ArchRProj = project, data = log10(project$nFrags),

name = "log10_nFrags", cells = project$cellNames)

upload gene expression data
use files downloaded from
https://drive.google.com/drive/folders/12j9ufV1L0uWbUlab-VoXRznDLKDO7PQ_?usp=sharing

data_files <- c("Final_scHTAN_colon_normal_epithelial_220213.rds",
"Final_scHTAN_colon_immune_220213.rds",
"Final_scHTAN_colon_stromal_220213.rds")

define object names
RNAseq_se_names <- gsub(".*scHTAN_|_220213.rds", "", data_files)

create objects as instances of SingleCellExperiment class
for (i in seq_along(RNAseq_se_names)) assign(RNAseq_se_names[i], Seurat::as.SingleCellExperiment(readRDS(data_files[i])))

add column with cell types and disease state
for (obj in RNAseq_se_names){

eval(parse(text = paste0("colData(", obj, ")$CellType <-", obj,"@colData@listData$CellType")))
eval(parse(text = paste0("colData(", obj, ")$DiseaseState <-", obj,"@colData@listData$DiseaseState")))

}

uniformize colData columns before merging
shared_cols <- purrr::map(list(colon_immune, colon_stromal, colon_normal_epithelial), colData) %>%

colonHealthy 7

purrr::map(colnames) %>%
purrr::reduce(intersect)

remove reducedDims since their column names differ across objects
for (obj in RNAseq_se_names){

eval(parse(text = paste0(obj, "@colData <- ", obj, "@colData[,colnames(", obj, "@colData) %in% shared_cols]")))
eval(parse(text = paste0("SingleCellExperiment::reducedDim(", obj, ") <- NULL")))
eval(parse(text = paste0(obj, "@int_colData@listData <- list()")))

}

merge RNAseq data objects

colon_RNAseq <- cbind(colon_immune, colon_normal_epithelial, colon_stromal)

RNA_se <- SummarizedExperiment(assay = list(counts = as(assay(colon_RNAseq, "counts"), "dgCMatrix")),
colData = colData(colon_RNAseq), rowData = rowData(colon_RNAseq))

select samples from healthy donors (no cancer)
RNA_se <- RNA_se[,colData(RNA_se)$DiseaseState == "Normal"]

RNA integration
project <- addGeneIntegrationMatrix(

ArchRProj = project,
useMatrix = "GeneScoreMatrix",
reducedDims = "IterativeLSI",
seRNA = RNA_se,
addToArrow = TRUE,
groupRNA = "CellType",
nameCell = "predicted_cell_un",
nameGroup = "predicted_group_un",
nameScore = "predicted_score_un")

project <- addGroupCoverages(ArchRProj = project, groupBy = "predicted_group_un")

add pseudo-bulk replicates
requires MACS2 installation

project <- addReproduciblePeakSet(ArchRProj = project,
groupBy = "predicted_group_un", pathToMacs2 = <PATH_TO_MACS2>)

LSI reduced dimensionality based on the GeneIntegrationMatrix

project <- addIterativeLSI(ArchRProj = project, clusterParams = list(resolution = 0.2,
sampleCells = 1000, n.start = 10), saveIterations = FALSE,

8 colonHealthy

useMatrix = "GeneIntegrationMatrix", varFeatures = 2500,
firstSelection = "variable", binarize = FALSE, name = "LSI_RNA")

add clusters based on the new reduced-dimensionality space
project <- addClusters(input = project, reducedDims = "LSI_RNA",

method = "Seurat", name = "Clusters_RNA", resolution = 0.8)

add UMAP embedding
project <- addUMAP(ArchRProj = project, reducedDims = "LSI_RNA",

nNeighbors = 30, minDist = 0.5, name ="UMAP_LSI_RNA", metric = "cosine",
force = TRUE)

batch correction
project <- addHarmony(ArchRProj = project, reducedDims = "LSI_RNA",

name = "Harmony_RNA", groupBy = "Sample")

UMAP embedding after batch correction
project <- addUMAP(ArchRProj = project, reducedDims = "Harmony_RNA",

nNeighbors = 30, minDist = 0.5, name ="UMAP_LSI_RNA_Harmony", metric = "cosine",
force = TRUE

)

find clutsters after batch correction
project <- addClusters(input = project, reducedDims = "Harmony_RNA",

method = "Seurat", name = "Clusters_RNA_Harmony", resolution = 0.8)

combine reduced-dimensionality spaces produced from ATACseq and RNAseq data
project <- addCombinedDims(project, reducedDims = c("IterativeLSI", "LSI_RNA"),

name = "LSI_Combined")

add UMAP embedding
project <- addUMAP(ArchRProj = project, name = "UMAP_combined", reducedDims = "LSI_Combined",

nNeighbors = 30, minDist = 0.5, metric = "cosine")

find clusters in combined reduced space
project <- addClusters(input = project, reducedDims = "LSI_Combined",

method = "Seurat", name = "Clusters_combined",
resolution = 0.4)

add information about sequence motifs recognized by known transcriptions factors
project <- addMotifAnnotations(ArchRProj = project,

motifSet = "cisbp", name = "Motif")

add background peaks to be compared against during peak variation assessement
project <- addBgdPeaks(project)

customClasses 9

calculate per-cell devations of motif annotations
project <- addDeviationsMatrix(project, peakAnnotation = "Motif")

save project
saveArchRProject(project, outputDir)

convert project into MultiAssayExperiment object
MAE <- maw.archr::create.mae.with.multiple.sces.from.archr(outputDir, tile.sizes = 500)

saveRDS(MAE, <OUTPUT_PATH>)

Data storage and access

The MultiAssayExperiments is split into separate SingleCellExperiment objects and they in
turn are split into components, all of which are stored in a single hdf5 file. Data and can be accessed
with a special function that extracts elements of the requested experiment(s), reassembles them, and
builds an MAE.

References

1. Zhang K, Hocker JD, Miller M, Hou X, Chiou J, Poirion OB, Qiu Y, Li YE, Gaulton KJ, Wang
A, Preissl S, Ren B. A single-cell atlas of chromatin accessibility in the human genome. Cell.
2021 Nov 24;184(24):5985-6001.e19. doi: 10.1016/j.cell.2021.10.024. Epub 2021 Nov 12.
PMID: 34774128; PMCID: PMC8664161.

2. Becker, W.R., Nevins, S.A., Chen, D.C. et al. Single-cell analyses define a continuum of cell
state and composition changes in the malignant transformation of polyps to colorectal cancer.
Nat Genet 54, 985–995 (2022). https://doi.org/10.1038/s41588-022-01088-x

Examples

check metada of dataset
colonHealthy(metadata = TRUE)
download data
Not run:
colonHealthy()

End(Not run)

customClasses custom classes

Description

Additional class definitions.

10 dummies

Classes

• SingleCellAccessibilityExperiment, contains SingleCellExperiment

dummies create dummy data sets

Description

Create dummy SCE and MAE objects.

Usage

dummySCE(
features = c("rowData", "rowRanges", "reducedDims", "altExps", "none")

)

dummyMAE(experiments = list(EXP1 = NULL, EXP2 = NULL))

Arguments

features character string specifying which (optional) features to create in the SCE

experiments named list of character vectors specifying experiments to create and their fea-
tures

Value

dummySCE returns a SingleCellExperiment. dummyMAE returns a MultiAssayExperiment.

Examples

scMultiome:::dummySCE()
scMultiome:::dummySCE("rowData")
scMultiome:::dummySCE("rowRanges")
scMultiome:::dummySCE("reducedDims")
scMultiome:::dummySCE("altExps")

scMultiome:::dummyMAE(list("dummyExperiment" = NULL))

fileOperations 11

fileOperations save and load data sets

Description

Functions to disassemble and save, and load and reassemble MultiAssayExperiment data sets.

Usage

saveMAE(mae, file, experiments = NULL, verbose = TRUE, overwrite = FALSE)

loadMAE(file, experiments, verbose)

saveExp(exp, expName, file, verbose)

S4 method for signature 'SummarizedExperiment'
saveExp(exp, expName, file, verbose)

S4 method for signature 'SingleCellExperiment'
saveExp(exp, expName, file, verbose)

loadExp(file, expName, verbose)

testFile(file)

uploadFile(
file,
sasToken,
endpoint = "https://bioconductorhubs.blob.core.windows.net"

)

Arguments

mae object of class MultiAssayExperiment

file path to a hdf5 file

experiments character string specifying which experiments to save/load

verbose logical flag specifying operation verbosity

overwrite logical flag specifying whether to allow overwriting the hdf5 file

exp an experiment object that inherits from class SummarizedExperiment, usually
a SingleCellExperiment

expName name of the experiment, i.e. name of the ArchR Matrix

sasToken access token to endpoint

endpoint Bioconductor’s data bucket endpoint url

12 fileOperations

Details

These are utilities for developers to add new data sets to the package. Most will usually be called
internally.

saveMAE is used to save a MultiAssayExperiment to a hdf5 file. It creates the file and passes
individual experiments to saveExp.

saveExp is called by saveMAE to disassemble experiment exp and save its elements in file. A
group hierarchy is created with the top level group called expName, e.g. "GeneScoreMatrix", and
lower level groups to store specific elements:

• experiment class is saved in group "class"

• assays are saved as sparse matrices in subgroup "assays", using writeSparseMatrix

• colData and colnames are saved in subgroup "properties"

• if experiment has rownames, the are saved in "properties"

• rowData is saved in "properties", unless it is an empty DataFrame

• if experiment has a rowRanges component, it is converted to a data frame and saved in
"properties"

• if experiment has a metadata component, it is deparsed to a string and saved in "properties"

• if experiment has a reducedDims component, they are saved in subgroup "reducedDims"

• if experiment has a altExps component, they are saved in subgroup "altExps" by recursively
calling saveExp

DataFrames (e.g. colData, rowData, embeddings) are converted to data.frames and saved as
compound type.

loadMAE is called by accessor functions to retrieve data. It locates the hdf5 file in which the data set
is stored and uses loadExp to extract the specified experiments.

loadExp first checks which property elements are stored for the experiment in question, loads all
elements of the experiment and builds a SummarizedExperiment object. If the experiment was
originally a SingleCellExperiment or a subclass thereof, that class as well as possible additional
slots are restored.

testFile can be used to test whether a data set loads correctly from a local file. It calls loadMAE
and extracts all experiment verbosely.

uploadFile will upload a single file to Bioconductor’s staging directory.

Value

saveExp returns TRUE invisibly if the save was successful. saveMAE returns a named list of TRUE
values. loadExp returns a SingleCellExperiment or an object of a subclass. loadMAE returns
a MultiAssayExperiment. testFile returns the MultiAssayExperiment stored in file in its
entirety. uploadFile returns TRUE invisibly.

Author(s)

Aleksander Chlebowski and Xiaosai

hematopoiesis 13

See Also

Vignette "rhdf5 - HDF5 interface for R" (vignette or browseVignettes) for details of hdf5 file
construction. writeSparseMatrix for details of saving sparse matrices.

Examples

create dummy MultiAssayExperiment
mae <- scMultiome:::dummyMAE()

fileName <- tempfile(fileext = ".h5")
saveMAE(mae, fileName) # save MAE
remae <- loadMAE(fileName, c("EXP1", "EXP2"), TRUE) # load MAE (internal)
remae_exp1 <- loadMAE(fileName, "EXP1", TRUE) # load MAE with one experiment (internal)

create dummy SingleCellExperiment
sce <- scMultiome:::dummySCE()

saveExp(sce, "EXP3", fileName, TRUE) # save one experiment (internal)
resce <- loadExp(fileName, "EXP3", TRUE) # load one experiment (internal)

testFile(fileName) # load whole MAE

hematopoiesis scATAC-seq and unpaired scRNA-seq of hematopoetic cells

Description

Example scATAC-seq data of hematopoietic cells included in ArchR package was integrated with
scRNAseq. ScATAC-seq data was obtained from GSE139369 and scRNA-seq obtained from https://jeffgranja.s3.amazonaws.com/ArchR/TestData/scRNA-
Hematopoiesis-Granja-2019.rds

Usage

hematopoiesis(
metadata = FALSE,
experiments = c("TileMatrix500", "GeneScoreMatrix", "GeneIntegrationMatrix",
"PeakMatrix")

)

Arguments

metadata logical flag specifying whether to return data or metadata only

experiments character vector of matrices to return; see Format

14 hematopoiesis

Format

MultiAssayExperiment obtained from an ArchR project. Annotated with the hg19 genome build.
Contains the following experiments:

• GeneIntegrationMatrix: SingleCellExperiment with 17889 rows and 10250 columns

• GeneScoreMatrix: SingleCellExperiment with 22217 rows and 10250 columns

• PeakMatrix: SingleCellExperiment with 150046 rows and 10250 columns

• TileMatrix500: SingleCellExperiment with 5762078 rows and 10250 columns

Value

MultiAssayExperiment made up of SingleCellExperiments with assays stored as DelayedMatrix
objects. If metadata = TRUE, an ExperimentHub object listing this data set’s metadata.

Data preparation

Example scATAC-seq data of hematopoietic cells included in ArchR package was integrated with
scRNA-seq. ScATAC-seq data was obtained from GSE139369 and scRNA-seq data was obtained
from https://jeffgranja.s3.amazonaws.com/ArchR/TestData/scRNA-Hematopoiesis-Granja-2019.rds"

Data storage and access

The MultiAssayExperiments is split into separate SingleCellExperiment objects and they in
turn are split into components, all of which are stored in a single hdf5 file. Data and can be accessed
with a special function that extracts elements of the requested experiment(s), reassembles them, and
builds an MAE.

References

Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia
associated with prostate cancer relapse. Granja et al., Nature Biotechnology 2019 Dec;37(12):1458-
1465. doi: 10.1038/s41587-019-0332-7

Examples

check metada of dataset
hematopoiesis(metadata = TRUE)
download data
Not run:
hematopoiesis()

End(Not run)

https://www.nature.com/articles/s41587-019-0332-7

listDatasets 15

listDatasets list all available data sets

Description

Summary information for all data sets available in the package.

Usage

listDatasets()

Value

A DataFrame listing all available data sets, with one data set per row and the following columns:

• Call: function call used to access the data set directly

• Author: original data set author

• Title: data set name

• Species: species name

• Lineage: sample lineage

• CellNumber: number of cells in the data set

• Multiome: paired or unpaired

• DiskSize: size of the dataset in storage (also size of the download)

• Version: data set version number or upload date

Author(s)

Aleksander Chlebowski

Examples

listDatasets()

16 prostateENZ

makeDataSetList create data set list

Description

Automatically creates the data set list of the package.

Usage

makeDataSetList(metadata)

Arguments

metadata a data.frame containing data set metadata

Details

This is an internal helper function for developers and will not be called directly. It creates the file
inst/scripts/datasetList.Rmd, which is incorporated into the package help page to automatically list
the current data sets.

Value

Invisible TRUE.

prostateENZ LNCaP Cells Treated with Enzalutamide

Description

Single-cell ATAC sequencing of parental LNCaP cells (DMSO treated, the control), LNCaP cells
treated with 10µM enzalutamide for 48 hours, and LNCaP-derived enzalutamide-resistant RES-A
and RES-B cells.

Usage

prostateENZ(
metadata = FALSE,
experiments = c("TileMatrix", "GeneScoreMatrix", "GeneIntegrationMatrix", "PeakMatrix",

"MotifMatrix")
)

Arguments

metadata logical flag specifying whether to return data or metadata only

experiments character vector of matrices to return; see Format

prostateENZ 17

Format

MultiAssayExperiment obtained from an ArchR project. Annotated with the Hg38 genome build.
Contains the following experiments:

• TileMatrix: SingleCellExperiment with 6062095 rows and 15522 columns

• GeneScoreMatrix: SingleCellExperiment with 24919 rows and 15522 columns

• GeneIntegrationMatrix: SingleCellExperiment with 23525 rows and 15522 columns

• PeakMatrix: SingleCellExperiment with 80210 rows and 15522 columns

• MotifMatrix: SingleCellExperiment with 870 rows and 15522 columns

Value

MultiAssayExperiment made up of SingleCellExperiments with assays stored as DelayedMatrix
objects. If metadata = TRUE, an ExperimentHub object listing this data set’s metadata.

Data storage and access

The MultiAssayExperiments is split into separate SingleCellExperiment objects and they in
turn are split into components, all of which are stored in a single hdf5 file. Data and can be accessed
with a special function that extracts elements of the requested experiment(s), reassembles them, and
builds an MAE.

Data preparation

scATAC data was downloaded from Gene Expression Omnibus (acc. no. GSE168667) and analyzed
with SingleCell ATAC - 10X pipeline v2.0.0. scRNAseq data was downloaded from Gene Expres-
sion Omnibus (acc.no. GSE168668) and analyzed with SingleCell Gene Expression Analysis - 10X
pipeline v6.0.1.

Downstream analysis was performed with the ArchR package:

1. Initiate ArchR project:

attach ArchR package
library(ArchR)

configure ArchR
addArchRThreads(16L)
addArchRGenome("hg38")

create arrow file from fragment files
list fragment files
fragments <- <FRAGMENT_FILES>
assign sample names
names(fragments) <- <SAMPLE_IDs>
create arrows
createArrowFiles(inputFiles = fragments, sampleNames = names(fragments))

specify output directory

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168667
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168668

18 prostateENZ

outDir <- <OUTPUT_DIRECTORY>

locate arrow files
arrows <- <ARROW_FILES>

create ArchR project
project <- ArchRProject(arrows, outDir)

add sample annotation
sampleNames <- c("SRR13927735", "SRR13927736", "SRR13927737", "SRR13927738")
sampleCells <- c("LNCaP", "LNCaP", "LNCaP RES-A", "LNCaP RES-B")
sampleTreatment <- c("0.1% DMSO 48h", "enzalutamide 48h", "enzalutamide", "enzalutamide")
sampleEnzalutamide <- c("sensitive", "sensitive", "resistant", "resistant")
names(sampleCells) <- names(sampleTreatment) <- names(sampleEnzalutamide) <- sampleNames
project$Cells <- sampleCells[project$Sample]
project$Treatment <- sampleTreatment[project$Sample]
project$Enzalutamide <- sampleEnzalutamide[project$Sample]
project$sampleLabels <- sampleLabels[project$Sample]

2. Prepare RNA-seq data:

gene expression data is analyzed with `scran.chan` package
the result is a SingleCellExperiment object
SCE <- <scran.chan ANALYSIS>

adjust for integration
rownames(SCE) <- rowData(SCE)$Symbol
assay(SCE, "counts") <- as(assay(SCE, "counts"), "dgCMatrix")
drop duplicates
SCE <- SCE[!duplicated(rowData(SCE)$Symbol),]

3. Commence ArchR analysis:

reduce dimensionality by iterative LSI
project <- addIterativeLSI(project, useMatrix = "TileMatrix", name = "iLSI_ATAC")

integrate ATAC and RNAseq
prepare grouping for constrained integration
groupMapping <- SimpleList(

sens_NT = SimpleList(
ATAC = project$cellNames[project$Sample == "SRR13927735"],
RNA = grep("SRR13927739", colnames(SCE), value = TRUE)

),
sens_Enz = SimpleList(

ATAC = project$cellNames[project$Sample == "SRR13927736"],
RNA = grep("SRR13927740", colnames(SCE), value = TRUE)

),
RES_A = SimpleList(

ATAC = project$cellNames[project$Sample == "SRR13927737"],
RNA = grep("SRR13927741", colnames(SCE), value = TRUE)

prostateENZ 19

),
RES_B = SimpleList(

ATAC = project$cellNames[project$Sample == "SRR13927738"],
RNA = grep("SRR13927742", colnames(SCE), value = TRUE)

)
)
execute
project <- addGeneIntegrationMatrix(project, useMatrix = "GeneScoreMatrix",

matrixName = "GeneIntegrationMatrix",
reducedDims = "iLSI_ATAC", seRNA = SCE,

groupATAC = "Sample", groupRNA = "Sample", groupList = groupMapping,
nameCell = "predictedCell",
nameGroup = "predictedGroup",
nameScore = "predictedScore",
addToArrow = TRUE, force = TRUE)

add LSI for RNAseq
project <- addIterativeLSI(project, useMatrix = "GeneIntegrationMatrix", name = "iLSI_RNAseq")

combine dim-reduced ATAC and RNAseq
project <- addCombinedDims(project, name = "iLSI_Combined", reducedDims = c("iLSI_ATAC", "iLSI_RNAseq"))

add UMAP embedding on combined reduced dimensionality
project <- addUMAP(project, reducedDims = "iLSI_Combined", name = "UMAP_Combined", verbose = FALSE)

impute weights (for smoother visualizations)
project <- addImputeWeights(project, reducedDims = "iLSI_Combined")

add group coverages
inspect available cell numbers
table(project$Sample)
project <- addGroupCoverages(project, groupBy = "Sample", minCells = 30, maxCells = 250)

add pseudo-bulk replicates
requires MACS2 installation
project <- addReproduciblePeakSet(project, groupBy = "Sample", pathToMacs2 = "<PATH_TO_MACS2_INSTALLATION>")

add peak matrix
project <- addPeakMatrix(project)
getAvailableMatrices(project)

add motif annotation
project <- addMotifAnnotations(project, motifset = "cisbp", name = "Motif")

add background peaks
project <- addBgdPeaks(project, method = "chromVAR")

add deviation matrix

20 reprogramSeq

project <- addDeviationsMatrix(project, peakAnnotation = "Motif", force = TRUE)
getAvailableMatrices(project)

save ArchR project
saveArchRProject(project)

4. Save results:

convert project to MultiAssayExperiment object
MAE <- maw.archr::create.mae.with.multiple.sces.from.archr(outDir)

inspect object
MAE

remove unpublished class
ind <- which(names(MAE) == "TileMatrix500")
MAElim <- MultiAssayExperiment::MultiAssayExperiment(

experiments = c(
TileMatrix500 = as(experiments(MAE)[[ind]], "SingleCellExperiment"),
as.list(experiments(MAE)[-ind])

))

save object
saveMAE("inst/extdata/prostateENZ.h5")

References

Single-cell ATAC and RNA sequencing reveal pre-existing and persistent cells associated with
prostate cancer relapse. Taavitsainen et al., Nature Communications 2021 Sep 6;12(1):5307 doi:
10.1038/s41467-021-25624-1

Examples

check metada of dataset
prostateENZ(metadata = TRUE)
download data
Not run:
prostateENZ()

End(Not run)

reprogramSeq reprogramSeq

Description

scMultiome data of LNCaP infected with FOXA1, NKX2-1, GATA6

https://pubmed.ncbi.nlm.nih.gov/34489465/
https://pubmed.ncbi.nlm.nih.gov/34489465/

reprogramSeq 21

Usage

reprogramSeq(
metadata = FALSE,
experiments = c("TileMatrix500", "GeneExpressionMatrix", "GeneScoreMatrix",
"NEPCMatrix", "PeakMatrix", "TF_bindingMatrix")

)

Arguments

metadata logical flag specifying whether to return data or metadata only

experiments character vector of matrices to return; see Format

Format

MultiAssayExperiment obtained from an ArchR project. Annotated with the hg38 genome build.
Contains the following experiments:

• TileMatrix500: SingleCellAccessibilityExperiment with 6062095 rows and 3903 columns

• GeneExpressionMatrix: SingleCellExperiment with 36438 rows and 3903 columns

• GeneScoreMatrix: SingleCellExperiment with 24919 rows and 3903 columns

• NEPCMatrix: SingleCellExperiment with 2 rows and 3903 columns

• PeakMatrix: SingleCellExperiment with 126602 rows and 3903 columns

• TF_bindingMatrix: SingleCellExperiment with 1274 rows and 3903 columns

Value

MultiAssayExperiment made up of SingleCellExperiments with assays stored as DelayedMatrix
objects. If metadata = TRUE, an ExperimentHub object listing this data set’s metadata.

Data preparation

scMultiome data was processed by ArchR.

Data storage and access

The MultiAssayExperiments is split into separate SingleCellExperiment objects and they in
turn are split into components, all of which are stored in a single hdf5 file. Data and can be accessed
with a special function that extracts elements of the requested experiment(s), reassembles them, and
builds an MAE.

References

Genentech dataset

22 retrieve

Examples

check metada of dataset
reprogramSeq(metadata = TRUE)
download data
Not run:
reprogramSeq()

End(Not run)

retrieve retrieve data set or its metadata

Description

Retrieve and return the data or metadata for the currently queried data set.

Usage

retrieve(dataset, metadata, experiments, verbose = FALSE)

Arguments

dataset character string specifying the data set name

metadata logical flag specifying whether to return the resource or only its metadata

experiments character string specifying which experiments to extract

verbose logical flag specifying loading verbosity

Details

This is a generic accessor function that is used by user-level accessor functions to access data sets
or their metadata.

Value

If metadata = FALSE, a MultiAssayExperiment, otherwise an ExperimentHub object.

RGtools 23

RGtools manipulate GeneRanges

Description

Prepare and recover GRanges objects for and after storing.

Usage

storeGR(x)

restoreGR(df)

Arguments

x object of class GRanges

df a data.frame

Details

GRanges objects, which can be encountered in rowRanges slots of SingleCellExperiments, are
stored as data frames (of type compound).

storeGR converts GRanges to a data frames converts factors to characters. restoreGR resets data
types in the basic columns and re-instantiates GRanges.

Value

storeGR returns a data frame, restoreGR returns a GRanges object.

templates documentation templates

Description

Create templates for data set documentation.

Usage

makeMakeData(dataset)

makeMakeMetadata(dataset)

makeR(dataset)

24 tfBinding

Arguments

dataset name of data set as character string

Details

Functions to facilitate documenting a new data set. Each function creates a file and attempts to open
it in RStudio for editing.

makeMakeData creates an Rmarkdown report called inst/scripts/make-data-<dataset>.Rmd.
makeMakeMetadata creates an R script called inst/scripts/make-metadata-<dataset>.R. makeR
creates an R file called R/<dataset>.Rmd.

Value

All functions return TRUE invisibly.

Author(s)

Aleksander Chlebowski

tfBinding TF Binding Info

Description

Combined transcription factor ChIP-seq data from ChIP-Atlas and ENCODE or from CistromeDB
and ENCODE.

Usage

tfBinding(
genome = c("hg38", "hg19", "mm10"),
source = c("atlas", "cistrome"),
metadata = FALSE

)

Arguments

genome character string specifying the genomic build

source character string specifying the ChIP-seq data source

metadata logical flag specifying whether to return data or metadata only

tfBinding 25

Format

GRangesList object containing binding site information of transcription factor ChIP-seq. Contains
the following experiments:

• hg38_atlas: GRangesList object of length 1558

• hg19_atlas: GRangesList object of length 1558

• mm10_atlas: GRangesList object of length 768

• hg38_cistrome: GRangesList object of length 1269

• hg19_cistrome: GRangesList object of length 1271

• mm10_cistrome: GRangesList object of length 544

Details

This is a special data set that stores transcription factor binding sites for human and mouse genomic
builds, which can be used with the package epiregulon to compute regulons.

Value

A list of TF binding sites as a GrangesList object.

Data storage and access

Each genomic build is a separate GRangesList object, stored in a separate RDS file. All genomic
builds can be accessed with the same function tfBinding.

Data preparation

1. Data download:
We download public ChIP-seq peak calls from ChIP-Atlas and ENCODE

1.1. ChIP-Atlas:
ChIP-seq binding sites were downloaded from ChIP-Atlas

metatdata
download fileList.tab from https://dbarchive.biosciencedbc.jp/kyushu-u/metadata/fileList.tab

dir <- "chipAtlas/"
fileLIST <- read.delim(file.path(dir, "metadata/fileList.tab"), header = FALSE)

for (genome in c("hg38", "mm10")){

TFLIST <- fileLIST[which(fileLIST[,3] == "TFs and others" &
fileLIST[,2] == genome &
fileLIST[,4] != "-" &
fileLIST[,5] == "All cell types" &
fileLIST[,7] == "05"),]

https://github.com/inutano/chip-atlas/wiki

26 tfBinding

download.files <- paste0("wget http://dbarchive.biosciencedbc.jp/kyushu-u/",
genome,"/assembled/", TFLIST$V1, ".bed")

write.table(x = download.files,
file = file.path(dir, genome, ".sh"),
quote = FALSE,
col.names = FALSE,
row.names = FALSE)

write.table(TFLIST,
file = file.path(dir, genome,".metadata.txt"),
quote = FALSE,
col.names = FALSE,
row.names = FALSE,
sep = "\t")

}

1.2. ENCODE:
Transcription factor ChIP-seq peaks were downloaded from ENCODE data portal

2. Merge peaks:
Merge peaks of the same TFs into the same bed files.

2.1. ChIP-Atlas:

library(GenomicRanges)
library(rtracklayer)

##################### chipatlas_bedfiles_merge #####################
Takes in a list of bed files and an accompanying legend that shows
which BED files correspond to a specific TF
Outputs a directory of merged bed files

dir <- 'chipAtlas/'
outdir <- 'chipatlas/data/chipatlas'

genomes <- c("mm10","hg38")
chr_order <- list()
chr_order[["mm10"]] <- c(paste0("chr",1:19),"chrX","chrY","chrM")
chr_order[["hg38"]] <- c(paste0("chr",1:22),"chrX","chrY","chrM")

for (genome in genomes){
Get directories of all bed files and make a list of the path of all bed files
list_beds <- list.files(file.path(dir, paste0(genome, '_1e5')),

pattern = "*.bed")

https://www.encodeproject.org/

tfBinding 27

Read the metatdata file

metadata <- read.delim(file.path(dir, genome, ".metadata.txt"), header=FALSE)
metadata$filename <- file.path(dir, genome, "_1e5", metadata$V1,".bed")
colnames(metadata)[4] <- "TF"

specify sorting order for chromosomes
chr_order_genome <- chr_order[[genome]]

get list of TFs represented in BED files
TF.list <- unique(metadata$TF)

for (i in seq_along(TF.list)) {

print(TF.list[i])

get bed files associated with TF
TF.files <- metadata[which(metadata$TF == TF.list[i]), "filename"]

merge bed files and sort by chromosome and starting coordinate

merged_bed <- read.delim(TF.files, skip = 1, header = FALSE)
merged_bed$V1 <- factor(merged_bed$V1, levels = chr_order_genome)
merged_bed <- na.omit(merged_bed)
merged_bed <- merged_bed[order(merged_bed$V1, merged_bed$V2),]

convert to granges object and merge overlapping ranges
gr <- makeGRangesFromDataFrame(merged_bed,

seqnames.field = "V1",
start.field = "V2",
end.field = "V3")

gr <- reduce(gr, drop.empty.ranges = TRUE)

write new bed file to directory
export.bed(gr, con = file.path(outdir, genome, TF.list[i],".bed"))

}

}

2.2. ENCODE:
Filter and merge ENCODE peaks

############### filter peaks ####################
Takes in bed files and filters the peaks
in each file based on the enrichment score.
Low Enrichment peaks are filtered out.

dir = 'encode/'
outdir = 'chipatlas/data/encode/'

28 tfBinding

for (genome in c("mm10", "hg38")){

Make a list of all the bed files
list_beds <- list.files(file.path(dir, genome, "raw"), pattern = "*.bed.gz")

#filter each bed file to have p value score > 4
for (i in seq_along(list_beds)) {

print(list_beds[i])

curr_bed <- read.table(file.path(dir, genome, "raw", list_beds[i]))

post_QC_bed <- curr_bed[curr_bed$V7 >=5,] #Q values

if (nrow(post_QC_bed) >100){
write.table(post_QC_bed,

file.path('/gstore/scratch/u/yaox19/encode/',
genome, "filtered", list_beds[i]),

row.names = F, col.names = F, quote = F, sep="\t")
}

}
}

##################### ENCODE_bedfiles_merge #####################
Takes in a list of bed files and an accompanying legend that shows
which BED files correspond to a specific TF
Outputs a directory of merged bed files

chr_order <- list()
chr_order[["mm10"]] <- c(paste0("chr",1:19),"chrX","chrY","chrM")
chr_order[["hg38"]] <- c(paste0("chr",1:22),"chrX","chrY","chrM")

replacement <- list(mm10 = "-mouse", hg38 = "-human")

for (genome in c("hg38","mm10")){

read metadata
list_beds <- list.files(file.path(dir, genome, "raw"), pattern = "*.bed.gz")
metadata <- read.delim(file.path(dir, genome, "raw", "metadata.tsv"))
metadata <- metadata[, c("File.accession", "Experiment.target")]

metadata$"Experiment.target" <- gsub(replacement[[genome]],"", metadata$"Experiment.target")

tfBinding 29

capitalize the first alphabet for mouse genes
if (genome == "mm10"){
metadata$"Experiment.target" <- stringr::str_to_title(metadata$"Experiment.target")

}

metadata$"File.accession" <- trimws(metadata$"File.accession")
metadata$"File.accession" <- file.path(dir, genome, "filtered",

metadata$"File.accession",".bed.gz")
colnames(metadata) <- c("filename","TF")

remove files that do not exist
metadata <- metadata[which(file.exists(metadata$filename)),]

specify sorting order for chromosomes
chr_order_genome <- chr_order[[genome]]

get list of TFs represented in BED files
TF.list <- unique(metadata$TF)

for (i in seq_along(TF.list)) {

print(TF.list[i])

get bed files associated with TF
TF.files <- metadata[which(metadata$TF == TF.list[i]), "filename"]

merge bed files and sort by chromosome and starting coordinate

merged_bed <- lapply(TF.files, function(file) read.delim(file, skip = 0, header = FALSE))
merged_bed <- do.call('rbind', merged_bed)
merged_bed$V1 <- factor(merged_bed$V1, levels = chr_order[[genome]])
merged_bed <- na.omit(merged_bed)
merged_bed <- merged_bed[order(merged_bed$V1, merged_bed$V2),]

convert to granges object and merge overlapping ranges
gr <- makeGRangesFromDataFrame(merged_bed,

seqnames.field = "V1",
start.field = "V2",
end.field = "V3")

gr <- reduce(gr, drop.empty.ranges = TRUE)

write new bed file to directory
export.bed(gr, con=file.path(outdir, genome, TF.list[i],".bed"))

}

30 tfBinding

}

2.3. Merge both ENCODE and ChIP-Atlas:

dir <- "chipatlas/data/"

chr_order <- list()
chr_order[["mm10"]] <- c(paste0("chr",1:19),"chrX","chrY","chrM")
chr_order[["hg38"]] <- c(paste0("chr",1:22),"chrX","chrY","chrM")

for (genome in c("mm10", "hg38")){

specify sorting order for chromosomes
chr_order_genome <- chr_order[[genome]]

########### merge with chipatlas bed files
chipatlas.files <- list.files(file.path(dir, "chipatlas", genome),pattern = "*.bed")
encode.files <- list.files(file.path(dir, "encode", genome),pattern = "*.bed")
shared.TFs <- intersect(chipatlas.files, encode.files)
chipatlas.TFs <- setdiff(chipatlas.files, encode.files)
encode.TFs <- setdiff(encode.files, chipatlas.files)

shared.TFs
for (i in seq_along(shared.TFs)) {

print(shared.TFs[i])

chipatlas <- read.table(file.path(dir, "chipatlas", genome, shared.TFs[i]), sep = "\t")
encode <- read.table(file.path(dir, "encode", genome, shared.TFs[i]), sep = "\t")

merged_bed <- rbind(chipatlas[,1:3], encode[,1:3])
merged_bed$V1 <- factor(merged_bed$V1, levels = chr_order_genome)
merged_bed <- na.omit(merged_bed)
merged_bed <- merged_bed[order(merged_bed$V1, merged_bed$V2),]

gr <- makeGRangesFromDataFrame(merged_bed,seqnames.field = "V1",
start.field = "V2",end.field = "V3")

gr <- reduce(gr, drop.empty.ranges = TRUE)

export.bed(gr, con=file.path(dir, "chipatlas_encode_merged", genome, shared.TFs[i]))

}

chipatlas
for (i in seq_along(chipatlas.TFs)) {

print(chipatlas.TFs[i])

tfBinding 31

chipatlas <- read.table(file.path(dir, "chipatlas", genome, chipatlas.TFs[i]), sep = "\t")

merged_bed <- chipatlas[,1:3]
merged_bed$V1 <- factor(merged_bed$V1, levels = chr_order_genome)
merged_bed <- na.omit(merged_bed)
merged_bed <- merged_bed[order(merged_bed$V1, merged_bed$V2),]

gr <- makeGRangesFromDataFrame(merged_bed,seqnames.field = "V1",
start.field = "V2",end.field = "V3")

gr <- reduce(gr, drop.empty.ranges = TRUE)

export.bed(gr, con=file.path(dir, "chipatlas_encode_merged", genome, chipatlas.TFs[i]))

}

encode
for (i in seq_along(length(encode.TFs))) {

print(encode.TFs[i])

encode <- read.table(file.path(dir, "encode", genome, encode.TFs[i]),sep = "\t")

merged_bed <- encode[,1:3]
merged_bed$V1 <- factor(merged_bed$V1, levels = chr_order_genome)
merged_bed <- na.omit(merged_bed)
merged_bed <- merged_bed[order(merged_bed$V1, merged_bed$V2),]

gr <- makeGRangesFromDataFrame(merged_bed,seqnames.field = "V1",
start.field = "V2",end.field = "V3")

gr <- reduce(gr, drop.empty.ranges = TRUE)

export.bed(gr, con=file.path(dir, "chipatlas_encode_merged", genome, encode.TFs[i]))

}
}

3. Liftover:
Perform liftover from hg38 to hg19 for the ChIP-seq binding sites

chain downloaded from https://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/hg38ToHg19.over.chain.gz
need to reformat chain file from space to tab
sed -r 's/^([0-9]+) ([0-9]+) ([0-9]+)$/\1\t\2\t\3/' hg38ToHg19.over.chain > hg38_to_hg19_tabs.chain

ch <- rtracklayer::import.chain(
con = "chipatlas/data/hg38_to_hg19_tabs.chain")

install liftover
if (!require("BiocManager", quietly = TRUE))

install.packages("BiocManager")

32 writeSparseMatrix

BiocManager::install("liftOver")
library(liftOver)

grl_hg19 <- liftOver(grl, ch)
saveRDS(grl_hg19, file = "hg19_motif_bed_granges.rds")

4. Session information:

sessionInfo()

References

ChIP-Atlas 2021 update: a data-mining suite for exploring epigenomic landscapes by fully inte-
grating ChIP-seq, ATAC-seq and Bisulfite-seq data. Zou Z, Ohta T, Miura F, Oki S. Nucleic Acids
Research. Oxford University Press (OUP); 2022. doi:10.1093/nar/gkac199

ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. Oki S, Ohta
T, Shioi G, Hatanaka H, Ogasawara O, Okuda Y, Kawaji H, Nakaki R, Sese J, Meno C. EMBO; Vol.
19, EMBO reports. 2018. doi:10.15252/embr.201846255

ENCODE: https://www.encodeproject.org/

Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Zheng R,
Wan C, Mei S, Qin Q, Wu Q, Sun H, Chen CH, Brown M, Zhang X, Meyer CA, Liu XS Nucleic
Acids Res, 2018 Nov 20. doi:10.1093/nar/gky1094

Cistrome data browser: a data portal for ChIP-Seq and chromatin accessibility data in human and
mouse. Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, Zhu M, Wu J, Shi X, Taing L, Liu T, Brown
M, Meyer CA, Liu XS Nucleic Acids Res, 2017 Jan 4;45(D1):D658-D662. doi:10.1093/nar/gkw983

Examples

check metada of dataset
tfBinding("mm10", metadata = TRUE)
download data
Not run:
tfBinding("mm10", "atlas")
tfBinding("mm10", "cistrome")

End(Not run)

writeSparseMatrix Write a sparse matrix

Description

Writes a sparse matrix to file in a compressed sparse format.

http://dx.doi.org/10.1093/nar/gkac199
http://dx.doi.org/10.15252/embr.201846255
https://academic.oup.com/nar/article/47/D1/D729/5193328
https://academic.oup.com/nar/article/45/D1/D658/2333932

writeSparseMatrix 33

Usage

writeSparseMatrix(
x,
file,
name,
chunk = 10000,
column = TRUE,
tenx = FALSE,
guess.integer = TRUE

)

Arguments

x A sparse matrix of some sort. This includes sparse DelayedMatrix objects.

file String containing a path to the HDF5 file. The file is created if it is not already
present.

name String containing the name of the group to store x.

chunk Integer scalar specifying the chunk size for the indices and values.

column Logical scalar indicating whether to store as compressed sparse column format.

tenx Logical scalar indicating whether to use the 10X compressed sparse column
format.

guess.integer Logical scalar specifying whether to guess an appropriate integer type from x.

Details

This writes a sparse matrix to file in various formats:

• column = TRUE and tenx = FALSE uses H5AD’s csr_matrix format.

• column = FALSE and tenx = FALSE uses H5AD’s csc_matrix format.

• tenx = TRUE uses 10X Genomics’ HDF5 matrix format.

For the first two formats, the apparent transposition is deliberate, because columns in R are inter-
preted as rows in H5AD. This allows us to retain consistency the interpretation of samples (columns
in R, rows in H5AD) and features (vice versa). Constructors for classes like H5SparseMatrix will
automatically transpose so no extra work is required.

If guess.integer = TRUE, we attempt to save x’s values into the smallest type that will accommo-
date all of its values. If x only contains unsigned integers, we will attempt to save either 8-, 16- or
32-bit unsigned integers. If x contains signed integers, we will fall back to 32-bit signed integers.
For all other values, we will fall back to double-precision floating point values.

We attempt to save x’s indices to unsigned 16-bit integers if the relevant dimension of x is small
enough. Otherwise we will save it as an unsigned 32-bit integer.

Value

A NULL invisibly. The contents of x are written to name in file.

34 writeSparseMatrix

Note

This function has been kindly contributed by Aaron Lun.

Author(s)

Aaron Lun

Examples

library(Matrix)
x <- rsparsematrix(100, 20, 0.5)
tmp <- tempfile(fileext = ".h5")
scMultiome:::writeSparseMatrix(x, tmp, "csc_matrix")
scMultiome:::writeSparseMatrix(x, tmp, "csr_matrix", column = FALSE)
scMultiome:::writeSparseMatrix(x, tmp, "tenx_matrix", tenx = TRUE)

rhdf5::h5ls(tmp)
library(HDF5Array)
H5SparseMatrix(tmp, "csc_matrix")
H5SparseMatrix(tmp, "csr_matrix")
H5SparseMatrix(tmp, "tenx_matrix")

Index

∗ internal
customClasses, 9
dummies, 10
makeDataSetList, 16
retrieve, 22
RGtools, 23
scMultiome-package, 2

assertHDF5, 3

colonHealthy, 4
customClasses, 9

DelayedMatrix, 33
dummies, 10
dummyMAE (dummies), 10
dummySCE (dummies), 10

fileOperations, 11

H5SparseMatrix, 33
hematopoiesis, 13

listDatasets, 15
loadExp (fileOperations), 11
loadMAE (fileOperations), 11

makeDataSetList, 16
makeMakeData (templates), 23
makeMakeMetadata (templates), 23
makeR (templates), 23

prostateENZ, 16

reprogramSeq, 20
restoreGR (RGtools), 23
retrieve, 22
RGtools, 23

saveExp (fileOperations), 11
saveExp,SingleCellExperiment-method

(fileOperations), 11

saveExp,SummarizedExperiment-method
(fileOperations), 11

saveMAE (fileOperations), 11
scMultiome (scMultiome-package), 2
scMultiome-package, 2
storeGR (RGtools), 23

templates, 23
testFile (fileOperations), 11
tfBinding, 24

uploadFile (fileOperations), 11

writeSparseMatrix, 32

35

	scMultiome-package
	assertHDF5
	colonHealthy
	customClasses
	dummies
	fileOperations
	hematopoiesis
	listDatasets
	makeDataSetList
	prostateENZ
	reprogramSeq
	retrieve
	RGtools
	templates
	tfBinding
	writeSparseMatrix
	Index

