Package ‘matter’

June 4, 2023
Type Package

Title A framework for rapid prototyping with file-based data
structures

Version 2.2.0

Date 2016-10-11

Author Kylie A. Bemis <k.bemis@northeastern.edu>
Maintainer Kylie A. Bemis <k.bemis@northeastern.edu>

Description Memory-efficient reading, writing, and manipulation of
structured binary data as file-based vectors, matrices, arrays,
lists, and data frames.

License Artistic-2.0

Depends R (>= 3.5), BiocParallel, Matrix, methods, stats
Imports BiocGenerics, ProtGenerics, digest, irlba, biglm, utils
Suggests BiocStyle, knitr, testthat

VignetteBuilder knitr

Collate matterGenerics.R utils.R drle.R atoms.R ops.R matter.R
matter_arr.R matter_fct.R matter_list.R matter_str.R signal.R
search.R sparse_arr.R stream_stat.R stats.R rowStats.R apply.R
scale.R biglm.R prcomp.R altrep.R

biocViews Infrastructure, DataRepresentation

URL https://github.com/kuwisdelu/matter
git_url https://git.bioconductor.org/packages/matter
git_branch RELEASE_3_17

git_last_commit 54f665¢

git_last_commit_date 2023-04-25
Date/Publication 2023-06-04

https://github.com/kuwisdelu/matter

2 asearch

R topics documented:
asearch L. 2
biglm . . . e e e 4
binvec e 5
bsearch e e 6
checksum e 7
chunkApply 8
colscale e e e e 11
colStatso e e e 12
COISWEED o o e e e e 14
deferred-ops L 15
drle-class e e e e e e 16
findpeaks L e e 17
matter-class e e e e 18
matter-datatypes oo e e e e 20
MAtEr-OPLIONS« v v v vt e e e e e e e e e e e e e e e e e e 21
matter-utils e e e e e e e e 22
matter_arr-class L L e e e 22
matter_fct-class e e 24
matter_list-class e e 26
matter_Str-class L. e e e e e e e e e e e 28
PICOMD . . o o o i it e e e e e e e e e e e e e 30
profmem e 31
Sparse_arr-Class L e e e e e e e e e 32
SIrEAM-StALS o e e e e e e e e e e e e e e e e 35
SITUCE o o e e e e e e e e e e e e e e 37
SUMMATY-SEALS v v et e e e e e e e e e e e e e e e e e 38
uuid ..o e e e e e e e 40

Index 42

asearch Approximate Search with Interpolation
Description

Search a set of values indexed by a sorted (non-decreasing) vector of keys. Finds the values cor-
responding to matches between the elements of the first argument and the keys. Approximate
matching is allowed within a specified tolerance. Interpolation can be performed for key collisions
and/or non-exact matches.

Usage

asearch(x, keys, values = seq_along(keys), tol = @, tol.ref = "abs",
nomatch = NA_integer_, interp = "none")

asearch

Arguments

X

keys

values
tol

tol.ref

nomatch

interp

Details

A vector of values to be matched. Only integer, numeric, and character vectors
are supported.

A sorted (non-decreasing) vector of keys to match against. Only integer, nu-
meric, and character vectors are supported.

A vector of values corresponding to the keys. Only numeric types are supported.
The tolerance for matching doubles. Must be nonnegative.

One of ’abs’, ’x’, or ’y’. If ’abs’, then comparison is done by taking the abso-
lute difference. If either ’x’ or ’y’, then relative differences are used, and this
specifies which to use as the reference (target) value.

The value to be returned in the case when no match is found, coerced to an
integer. (Ignored if nearest = TRUE.)

Interpolation scheme for non-exact matches or key collisions. One of 'none’,
’mean’, ’sum’, 'max’, min’, ’area’, ’linear’, ’cubic’, *gaussian’, or ’lanczos’.

The algorithm is implemented in C and relies on binary search when the keys are sorted. See
implementation details for bsearch for matching behavior when keys are sorted. For unsorted
keys, a fallback to linear search is used.

Value

A vector of the same length as x, giving the values corresponding to matching keys.

Author(s)

Kylie A. Bemis

See Also

bsearch

Examples

keys <- ¢(1.11, 2.22, 3.33, 5.0, 5.1)
values <- keys*1.11

asearch(2.22, keys, values) # 2.42359
asearch(3.0, keys, values) # NA
asearch(3.0, keys, values, tol=0.1, tol.ref="y") # 3.801133

4 biglm

biglm Using “biglm” with “matter”

Description

This method allows matter_mat and sparse_mat matrices with the “biglm” package.

Usage

S4 method for signature 'formula,matter_mat'
bigglm(formula, data, ..., chunksize = NULL, fc = NULL)

S4 method for signature 'formula,sparse_mat'

bigglm(formula, data, ..., chunksize = NULL, fc = NULL)
Arguments
formula A model formula.
data A matter matrix with column names.
chunksize An integer giving the maximum number of rows to process at a time. If left

NULL, this will be calculated by dividing the chunksize of data by the number
of variables in the formula.

fc Either column indices or names of variables which are factors.

Additional options passed to bigglm.

Value

An object of class bigglm.

Author(s)
Kylie A. Bemis

See Also
bigglm

Examples
set.seed(1)
x <- matter_mat(rnorm(1000), nrow=100, ncol=10)
colnames(x) <- c(paste@("x", 1:9), "y")

fm <- paste@("y ~ ", paste@(paste@("x", 1:9), collapse=" + "))
fm <- as.formula(fm)

binvec 5

fit <- bigglm(fm, data=x, chunksize=50)
coef(fit)

binvec Bin a vector

Description

Bin a vector based on intervals or groups.

Usage
binvec(x, u, v, method = "sum")
Arguments
X A numeric vector.
u, v The (inclusive) lower and upper indices of the bins, or a factor providing the
groupings.
method The method used to bin the values. This is efficiently implemented for "sum",
"mean", "min" or "max". Providing a function will use a less-efficient fallback.
Value

An vector of the summarized (binned) values.

Author(s)

Kylie A. Bemis

Examples

set.seed(1)
x <= sort(runif(20))
binvec(x, c(1,6,11,16), c(5,10,15,20), method="mean")

binvec(x, seq(from=1, to=21, by=5), method="mean")

6 bsearch

bsearch Binary Search with Approximate Matching

Description

Use a binary search to find approximate matches for the elements of its first argument among those
in its second. This implementation allows for returning the index of the nearest match if there are
no exact matches. It also allows specifying a tolerance for the comparison.

Usage

bsearch(x, table, tol = 0, tol.ref = "abs",
nomatch = NA_integer_, nearest = FALSE)

reldiff(x, y, ref = "abs")

Arguments
X A vector of values to be matched. Only integer, numeric, and character vectors
are supported.
y, table A sorted (non-decreasing) vector of values to be matched against. Only integer,
numeric, and character vectors are supported.
tol The tolerance for matching doubles. Must be >= 0.

ref, tol.ref One of ’abs’, ’x’, or ’y’. If "abs’, then comparison is done by taking the abso-
lute difference. If either "x’ or ’y’, then relative differences are used, and this
specifies which to use as the reference (target) value. For strings, this uses the
Hamming distance (number of errors), normalized by the length of the reference
string for relative differences.

nomatch The value to be returned in the case when no match is found, coerced to an
integer. (Ignored if nearest = TRUE.)

nearest Should the index of the closest match be returned if no exact matches are found?

Details

The algorithm is implemented in C and currently only works for ’integer’, 'numeric’, and ’charac-
ter’ vectors. If there are multiple matches, then the first match that is found will be returned, with
no guarantees. If a nonzero tolerance is provided, the closest match will be returned.

The "nearest" match for strings when there are no exact matches is decided by the match with
the most initial matching characters. Tolerance is ignored for strings and integers. Behavior is
undefined and results may be unexpected if values includes NAs.

Value

A vector of the same length as x, giving the indexes of the matches in table.

checksum 7

Author(s)
Kylie A. Bemis

See Also

asearch, match, pmatch, findInterval

Examples

a <- ¢(1.11, 2.22, 3.33, 5.0, 5.1)

bsearch(2.22, a) # 2

bsearch(3.0, a) # NA

bsearch(3.0, a, nearest=TRUE) # 3

bsearch(3.0, a, tol=0.1, tol.ref="values") # 3

b <- c("hello”, "world!")
bsearch("world!"”, b) # 2
bsearch("worl”, b) # NA
bsearch(”worl”, b, nearest=TRUE) # 2

checksum Calculate Checksums and Cryptographic Hashes

Description

This is a generic function for applying cryptographic hash functions and calculating checksums for
arbitrary R objects.

Usage

checksum(x, ...)

S4 method for signature 'matter_

checksum(x, algo = "shal”, ...)
Arguments

X An object to be hashed.

algo The hash function to use.

Additional arguments to be passed to the hash function.

Details

The method for matter objects calculates checksums of each of the files in the object’s paths.

8 chunkApply

Value

A character vector giving the hash or hashes of the object.

Author(s)
Kylie A. Bemis

See Also

digest

Examples

x <- matter(1:10)
y <- matter(1:10)

checksum(x)
checksum(y) # should be the same

chunkApply Apply Functions Over Chunks of a List, Vector, or Matrix

Description

Perform equivalents of apply, lapply, and mapply, but over parallelized chunks of data. This
is most useful if accessing the data is potentially time-consuming, such as for file-based matter
objects. Operating on chunks reduces the number of I/O operations.

Usage

Operate on elements/rows/columns
chunkApply (X, MARGIN, FUN, ...,
simplify = FALSE, outpath = NULL,
verbose = FALSE, BPPARAM = bpparam())

chunkLapply (X, FUN, ...,
simplify = FALSE, outpath = NULL,
verbose = FALSE, BPPARAM = bpparam())

chunkMapply(FUN, ...,
simplify = FALSE, outpath = NULL,
verbose = FALSE, BPPARAM = bpparam())

Operate on complete chunks
chunk_rowapply (X, FUN, ...,

n_n

simplify = "c", nchunks = NA, depends = NULL,

chunkApply 9

verbose = FALSE, BPPARAM = bpparam())

chunk_colapply(X, FUN, ...,

simplify = "c", nchunks = NA, depends = NULL,
verbose = FALSE, BPPARAM = bpparam())

chunk_lapply (X, FUN, ...,

simplify = "c", nchunks = NA, depends = NULL,
verbose = FALSE, BPPARAM = bpparam())

chunk_mapply(FUN, ..., MoreArgs = NULL,
simplify = "c", nchunks = NA, depends = NULL,
verbose = FALSE, BPPARAM = bpparam())

Arguments

X A matrix for chunkApply(), a list or vector for chunkLapply(), or lists for
chunkMapply (). These may be any class that implements suitable methods for
[, L[, dim, and length().

MARGIN If the object is matrix-like, which dimension to iterate over. Must be 1 or 2,
where 1 indicates rows and 2 indicates columns. The dimension names can also
be used if X has dimnames set.

FUN The function to be applied.
MoreArgs A list of other arguments to FUN.

Additional arguments to be passed to FUN.

simplify Should the result be simplified into a vector, matrix, or higher dimensional ar-
ray?

nchunks The number of chunks to use. If NA (the default), this is inferred from getOption("matter.default. chul
For I0-bound operations, using fewer chunks will often be faster, but use more
memory.

depends A list with length equal to the extent of X. Each element of depends should

give a vector of indices which correspond to other elements of X on which each
computation depends. These elements are passed to FUN. For time efficiency, no
attempt is made to verify these indices are valid.

outpath If non-NULL, a file path where the results should be written as they are pro-
cessed. If specified, FUN must return a 'raw’, ’logical’, ’integer’, or 'numeric’
vector. The result will be returned as a matter object.

verbose Should user messages be printed with the current chunk being processed?
BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.
Details

For chunkApply (), chunkLapply (), and chunkMapply():

For vectors and lists, the vector is broken into some number of chunks according to chunks. The
individual elements of the chunk are then passed to FUN.

10 chunkApply

For matrices, the matrix is chunked along rows or columns, based on the number of chunks. The
individual rows or columns of the chunk are then passed to FUN.

In this way, the first argument of FUN is analogous to using the base apply, lapply, and mapply
functions.

For chunk_rowapply (), chunk_colapply(), chunk_lapply(), and chunk_mapply():

In this situation, the entire chunk is passed to FUN, and FUN is responsible for knowing how to handle
a sub-vector or sub-matrix of the original object. This may be useful if FUN is already a function
that could be applied to the whole object such as rowSums or colSums.

When this is the case, it may be useful to provide a custom simplify function.
For convenience to the programmer, several attributes are made available when operating on a
chunk.

* "chunkid":The index of the chunk currently being processed by FUN.

* "index":The indices of the elements of the chunk, as elements/rows/columns in the original
matrix/vector.

* "depends" (optional):If depends is given, then this is a list of indices within the chunk. The
length of the list is equal to the number of elements/rows/columns that should be processed
in the chunk. Each list element is a vector of indices giving the elements/rows/columns of the
chunk that should be processed.

The depends argument can be used to iterate over dependent elements of a vector, or dependent
rows/columns of a matrix. This can be useful if the calculation for a particular row/column/element
depends on the values of others.

When depends is provided, multiple rows/columns/elements will be passed to FUN. Each element
of the depends list should be a vector giving the indices that should be passed to FUN.

For example, this can be used to implement a rolling apply function.

Value

Typically, a list if simplify=FALSE. Otherwise, the results may be coerced to a vector or array.

Author(s)
Kylie A. Bemis

See Also
apply, lapply, mapply,
Examples
register(SerialParam())

set.seed(1)
x <= matrix(rnorm(100042), nrow=1000, ncol=1000)

out <- chunkApply(x, 1L, mean, nchunks=10)

colscale 11

colscale Scaling and Centering by Row or Column Based on Grouping

Description

Apply the equivalent of scale to either columns or rows of a matrix, using a grouping variable.

Usage

S4 method for signature 'ANY'
colscale(x, center=TRUE, scale=TRUE,
group = NULL, ..., BPPARAM = bpparam())

S4 method for signature 'ANY'
rowscale(x, center=TRUE, scale=TRUE,

group = NULL, ..., BPPARAM = bpparam())
Arguments
X A matrix-like object.
center Either a logical value or a numeric vector of length equal to the number of

columns of ’x’ (for colscale()) or the number of the rows of ’x’ (for rowscale()).
If a grouping variable is given, then this must be a matrix with number of
columns equal to the number of groups.

scale Either a logical value or a numeric vector of length equal to the number of
columns of ’x’ (for colscale()) or the number of the rows of ’x’ (for rowscale()).
If a grouping variable is given, then this must be a matrix with number of
columns equal to the number of groups.

group A vector or factor giving the groupings with length equal to the number of rows
of ’x’ (for colscale()) or the number of the columns of ’x’ (for rowscale()).

Arguments passed to rowStats() or colStats() respectively, if center or
scale must be calculated.

BPPARAM An optional instance of BiocParallelParam. See documentation for bplapply.

Details

See scale for details.

Value
A matrix-like object (usually of the same class as x) with either ‘col-scaled:center’ and ‘col-scaled:scale’
attributes or ‘row-scaled:center’ and ‘row-scaled:scale’ attributes.

Author(s)
Kylie A. Bemis

12 colStats

See Also

scale

Examples

x <- matter(1:100, nrow=10, ncol=10)

colscale(x)

colStats Row and Column Summary Statistics Based on Grouping

Description

These functions perform calculation of summary statistics over matrix rows and columns for each
level of a grouping variable.

Usage

S4 method for signature 'ANY'
rowStats(x, ..., BPPARAM = bpparam())

S4 method for signature 'ANY'
colStats(x, ..., BPPARAM = bpparam())

S4 method for signature 'matter_mat'
rowStats(x, ..., BPPARAM = bpparam())

S4 method for signature 'matter_mat'
colStats(x, ..., BPPARAM = bpparam())

S4 method for signature 'sparse_mat'
rowStats(x, ..., BPPARAM = bpparam())

S4 method for signature 'sparse_mat'
colStats(x, ..., BPPARAM = bpparam())

.rowStats(x, stat, group = NULL,

na.rm = FALSE, simplify = TRUE, drop = TRUE,

iter.dim = 1L, BPPARAM = bpparam(), ...)
.colStats(x, stat, group = NULL,

na.rm = FALSE, simplify = TRUE, drop = TRUE,

iter.dim = 2L, BPPARAM = bpparam(), ...)

colStats

Arguments

X

stat

group

na.rm

simplify

drop

iter.dim

BPPARAM

Details

13

A matrix on which to calculate summary statistics.

The name of summary statistics to compute over the rows or columns of a ma-
trix. Allowable values include: "min", "max", "prod", "sum"
"sd", "any", "all", and "nnzero".

, "mean", "var",

A factor or vector giving the grouping. If not provided, no grouping will be
used.

If TRUE, remove NA values before summarizing.

Simplify the results from a list to a vector or array. This also drops any additional
attributes (besides names).

If only a single summary statistic is calculated, return the results as a vector (or
matrix) rather than a list.

The dimension to iterate over. Must be 1 or 2, where 1 indicates rows and 2
indicates columns.

An optional instance of BiocParallelParam. See documentation for bplapply.

Additional arguments passed to chunk_rowapply () or chunk_colapply(), such
as the number of chunks.

The summary statistics methods are calculated over chunks of the matrix using s_colstats and
s_rowstats. For matter objects, the iteration is performed over the major dimension for 10 effi-

ciency.

Value

A list for each stat requested, where each element is either a vector (if no grouping variable is
provided) or a matrix where each column corresponds to a different level of group.

If drop=TRUE, and only a single statistic is requested, then the result will be unlisted and returned
as a vector or matrix.

Author(s)

Kylie A. Bemis

See Also

colSums

Examples

register(SerialParam())

set.seed(1)

X <- matrix(runif(100*2), nrow=100, ncol=100)

14 colsweep

g <- as.factor(rep(letters[1:5], each=20))

colStats(x, "mean”, group=g)

colsweep Sweep on Array Summaries Based on Grouping

Description

Apply the equivalent of sweep to either columns or rows of a matrix, using a grouping variable.

Usage

S4 method for signature 'ANY'
colsweep(x, STATS, FUN = "-" group = NULL, ...)

S4 method for signature 'matter_mat'
colsweep(x, STATS, FUN = "-" group = NULL, ...)

S4 method for signature 'sparse_mat'
colsweep(x, STATS, FUN = "-" group = NULL, ...)

S4 method for signature 'ANY'
rowsweep(x, STATS, FUN = "-" group = NULL, ...)

S4 method for signature 'matter_mat'
rowsweep(x, STATS, FUN = "-" group = NULL, ...)

S4 method for signature 'sparse_mat'

rowsweep(x, STATS, FUN = "-" group = NULL, ...)
Arguments
X A matrix-like object.
STATS The summary statistic to be swept out, with length equal to the number of

columns of ’x’ (for colsweep()) or the number of the rows of ’x’ (for rowsweep()).
If a grouping variable is given, then this must be a matrix with number of
columns equal to the number of groups.

FUN The function to be used to carry out the sweep.

group A vector or factor giving the groupings with length equal to the number of rows
of ’x’ (for colsweep()) or the number of the columns of ’x’ (for rowsweep()).

Ignored.

Details

See sweep for details.

deferred-ops 15

Value

A matrix-like object (usually of the same class as x) with the statistics swept out.

Author(s)
Kylie A. Bemis

See Also

sweep
Examples
set.seed(1)
X <- matrix(1:100, nrow=10, ncol=10)

colsweep(x, colStats(x, "mean”))

deferred-ops Deferred Operations on “matter” Objects

Description

Some arithmetic, comparison, and logical operations are available as delayed operations on matter_arr
and sparse_arr objects.

Details

Currently the following delayed operations are supported:

‘Arith’: 47, =7, %2 o p e

‘Compare’: ‘==, >’, ‘<, “I=", ‘<=’, ‘>=’

‘Logic™: ‘&’, ‘I’

‘Ops’: ‘Arith’, ‘Compare’, ‘Logic’

‘Math’: ‘exp’, ‘log’, ‘log2’, ‘logl0’

Arithmetic operations are applied in C++ layer immediately after the elements are read from virtual
memory. This means that operations that are implemented in C and/or C++ for efficiency (such as
summary statistics) will also reflect the execution of the deferred arithmetic operations.

Value

A new matter object with the registered deferred operation. Data in storage is not modified; only
object metadata is changed.

Author(s)
Kylie A. Bemis

16 drle-class
See Also
Arith, Compare, Logic, Ops, Math
Examples
x <- matter(1:100)
y <-2x*xx+1
x[1:10]
y[1:10]
mean(x)
mean(y)
drle-class Delta Run Length Encoding
Description
The drle class stores delta-run-length-encoded vectors. These differ from other run-length-encoded
vectors provided by other packages in that they allow for runs of values that each differ by a common
difference (delta).
Usage
Instance creation
drle(x, cr_threshold = 0)
is.drle(x)
Additional methods documented below
Arguments
X An integer or numeric vector to convert to delta run length encoding for drle();
an object to test if it is of class drle for is.drle().
cr_threshold The compression ratio threshold to use when converting a vector to delta run
length encoding. The default (0) always converts the object to drle. Values
of cr_threshold < 1 correspond to compressing even when the output will
be larger than the input (by a certain ratio). For values > 1, compression will
only take place when the output is (approximately) at least cr_threshold times
smaller.
Value

An object of class drle.

findpeaks

Slots

values: The values that begin each run.
lengths: The length of each run.

deltas: The difference between the values of each run.

Creating Objects

drle instances can be created through drle().

Methods

Standard generic methods:

x[1]: Get the elements of the uncompressed vector.
length(x): Get the length of the uncompressed vector.

c(x, ...): Combine vectors.

Author(s)
Kylie A. Bemis

See Also

rle

Examples

Create a drle vector
x <- ¢(1,1,1,1,1,6,7,8,9,10,21,32,33,34,15)
y <- drle(x)

Check that their elements are equal
X == y[]

17

findpeaks Find Peaks Based on Local Maxima

Description

Find peaks in a signal based on its local maxima, as determined by a sliding window.

Usage
findpeaks(x, width = 5)

locmax(x, width = 5)

18 matter-class

Arguments
X A numeric vector.
width The number of signal elements to consider when determining if the center of the
sliding window is a local maximum.
Details

For this function, a local maximum is defined as an element greater than all of the elements within
width / 2 elements to the left of it, and greater than or equal to all of the elements within width /
2 elements to the right of it.

The peaks in this case are simply the local maxima of the signal. The peak boundaries are found by
descending a local maximum until a local minimum is found on either side, using the same criteria
as above.

Value

For locmax (), an logical vector indicating whether each element is a local maximum.

For findpeaks(), an integer vector giving the indices of the peaks, with attributes ’left_bounds’
and ’right_bounds’ giving the left and right boundaries of the peak as determined using the rule
above.

Author(s)

Kylie A. Bemis

Examples
x <-c(e, 1,1,2,3,2,1,4, 5, 1,1, 0
locmax(x)

findpeaks(x)

matter-class Vectors, Matrices, and Arrays Stored in Virtual Memory

Description

The matter class and its subclasses are designed for easy on-demand read/write access to binary
virtual memory data structures, and working with them as vectors, matrices, arrays, lists, and data
frames.

matter-class 19

Usage

Instance creation
matter(...)

Check if an object is a matter object
is.matter(x)

Coerce an object to a matter object
as.matter(x)

Additional methods documented below

Arguments
Arguments passed to subclasses.
X An object to check if it is a matter object or coerce to a matter object.
Value

An object of class matter.

Slots
data: This slot stores any information necessary to access the data for the object (which may
include the data itself and/or paths to file locations, etc.).

type: The storage mode of the accessed data when read into R. This is a ’factor’ with levels ‘raw’,
"logical’, ’integer’, *numeric’, or ’character’.

dim: Either "NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either 'NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
’NULL for vectors.
Creating Objects
matter is a virtual class and cannot be instantiated directly, but instances of its subclasses can be
created through matter().
Methods

Class-specific methods:

atomdata(x): Access the ’data’ slot.
adata(x): An alias for atomdata(x).

type(x), type(x) <- value: Get or set data ’type’.

Standard generic methods:

20

matter-datatypes

length(x), length(x) <- value: Get or set length.
dim(x), dim(x) <- value: Get or set ’dim’.
names(x), names(x) <- value: Get or set names’.

dimnames(x), dimnames(x) <- value: Get or set ’dimnames’.

Author(s)

Kylie A. Bemis

See Also

matter_arr, matter_mat, matter_vec, matter_fct, matter_list, matter_str

Examples

Create a matter_vec vector
x <- matter(1:100, length=100)
X

Create a matter_mat matrix
y <- matter(1:100, nrow=10, ncol=10)
y

matter-datatypes Data Types for “matter” Objects

Description

The matter package defines a number of data types for translating between data elements stored in
virtual memory and data elements loaded into R. These are typically set and stored via the datamode
argument and slot.

At the R level, matter objects may be any of the following data modes:

* raw:matter objects of this mode are typically vectors of raw bytes.

* logical:Any matter object that represents a logical vector or has had any Compare or Logic
delayed operations applied to it will be of this type.

* integer:matter objects represented as integers in R.
* numeric:matter objects represented as doubles in R.

* character:matter objects representated as character vectors in R.
In virtual memory, matter objects may be composed of atomic units of the following data types:

 char:8-bit signed integer; defined as char.
* uchar:8-bit unsigned integer; used for ‘Rbyte’ or ‘raw’; defined as unsigned char.

* short:16-bit signed integer; defined as int16_t.

matter-options 21

ushort:16-bit unsigned integer; defined as uint16_t.

int:32-bit signed integer; defined as int32_t.

uint:32-bit unsigned integer; defined as uint32_t.

long:64-bit signed integer; defined as int64_t.

ulong:64-bit unsigned integer; defined as uint64_t.

float:Platform dependent, but usually a 32-bit float; defined as float.
double:Platform dependent, but usually a 64-bit float; defined as double.

While a substantial effort is made to coerce data elements properly between data types, sometimes
this cannot be done losslessly. This will generate a warning (typically many such warnings) that
can be silenced by setting options(matter.cast.warning=FALSE).

Note that the unsigned data types do not support NA; coercion to signed short and long attempts
to preserve missingness. The special values NaN, Inf, and -Inf are only supported by the floating-
point types, and will be set to NA for signed integral types, and to @ for unsigned integral types.

matter-options Options for “matter” Objects

Description

The matter package provides the following options:

options(matter.cast.warning=TRUE):Should a warning be emitted when casting between
data types results in a loss of precision?

options(matter.compress.atoms=3):The compression ratio threshold to be used to deter-
mine when to compress atoms in a matter object. Setting to O or FALSE means that atoms are
never compressed.

options(matter.default.nchunks=20L):The default number of chunks to use when iterat-
ing over matter objects.

options(matter.default.chunksize=1000000L):The default chunksize for new matter
objects. This is the (suggested) maximum number of elements which should be accessed at
once by summary functions and linear algebra. Ignored when explicitly subsetting the dataset.
Must be an integer.

options(matter.show.head=TRUE):Should a preview of the beginning of the data be dis-
played when the object is printed?

options(matter.show.head.n=6):The number of elements, rows, and/or columns to be dis-
played by the object preview.

options(matter.coerce.altrep=FALSE):When coercing matter objects to native R ob-
jects (such as matrix), should a matter-backed ALTREP object be returned instead? The
initial coercion will be cheap, and the result will look like a native R object. This does not
guarantee that the full data is never read into memory. Not all functions are ALTREP-aware
at the C-level, so some operations may still trigger the full data to be read into memory. This
should only ever happen once, as long as the object is not duplicated, though.

22 matter_arr-class

e options(matter.coerce.altrep.list=FALSE):Should a matter-backed ALTREP list be
returned when coercing matter_list lists to native R lists? Lists are treated differently, be-
cause the coercion is more costly, as the metadata for each list element must be uncompressed
and converted to separate ALTREP representations. (Note that this does not affect matter_df
data frames, which do not compress metadata about the columns, because the columns are
regular matter vectors.)

* options(matter.wrap.altrep=FALSE):When coercing to a matter-backed ALTREP ob-
ject, should the object be wrapped in an ALTREP wrapper? (This is always done in cases
where the coercion preserves existing attributes.) This allows setting of attributes without
triggering a (potentially expensive) duplication of the object when safe to do so.

* options(matter.dump.dir=tempdir()):Temporary directory where matter object files should
be dumped when created without user-specified file paths.

matter-utils Internal Utilities for “matter” Package

Description

Low-level utility functions, classes, and data defined in the matter package. They are not intended
to be used directly.

matter_arr-class Out-of-Memory Arrays

Description

The matter_arr class implements out-of-memory arrays.

Usage

Instance creation

matter_arr(data, type = "double"”, path = NULL,
dim = NA_integer_, dimnames = NULL, offset = @, extent = NA_real_,
readonly = NA, rowMaj = FALSE, ...)

matter_mat(data, type = "double"”, path = NULL,
nrow = NA_integer_, ncol = NA_integer_, dimnames = NULL,
offset = @, extent = NA_real_, readonly = NA, rowMaj = FALSE, ...)

matter_vec(data, type = "double"”, path = NULL,
length = NA_integer_, names = NULL, offset = @, extent = NA_real_,
readonly = NA, rowMaj = FALSE, ...)

Additional methods documented below

matter_arr-class 23

Arguments

data An optional data vector which will be initially written to virtual memory if pro-
vided.

type A ’character’ vector giving the storage mode of the data in virtual memory. Al-
lowable values are the C types (’char’, 'uchar’, short’, ’ushort’, ’int’, ’uint’,
’long’, ’ulong’, *float’) and their R equivalents (Craw’, ’logical’, ’integer’, nu-
meric’). See ?datatypes for details.

path A ’character’ vector of the path(s) to the file(s) where the data are stored. If

"NULL’, then a temporary file is created using tempfile.
dim, nrow, ncol, length

The dimensions of the array, or the number of rows and columns, or the length.
dimnames, names

The names of the matrix dimensions or vector elements.

offset A vector giving the offsets in number of bytes from the beginning of each file in
"path’, specifying the start of the data to be accessed for each file.

extent A vector giving the length of the data for each file in ’path’, specifying the
number of elements of size ’type’ to be accessed from each file.

readonly Whether the data and file(s) should be treated as read-only or read/write.

rowMaj Whether the data is stored in row-major or column-major order. The default is

to use column-major order, which is the same as native R matrices.

Additional arguments to be passed to constructor.

Value

An object of class matter_arr.

Slots
data: This slot stores any information necessary to access the data for the object (which may
include the data itself and/or paths to file locations, etc.).
type: The storage mode of the accessed data when read into R. This is a *factor’ with levels 'raw’,
"logical’, ’integer’, numeric’, or ’character’.
dim: Either "NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either 'NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL for vectors.

ops: Deferred arithmetic operations.

transpose: Indicates whether the data is stored in row-major order (TRUE) or column-major order
(FALSE). For a matrix, switching the order that the data is read is equivalent to transposing
the matrix (without changing any data).

indexed: For matter_mat only. Indicates whether the pointers to rows or columns are indexed for
quick access or not.

24 matter_fct-class

Extends

matter

Creating Objects
matter_arr instances can be created through matter_arr() or matter(). Matrices and vectors
can also be created through matter_mat() and matter_vec().

Methods

Standard generic methods:

length(x), length(x) <- value: Get or set length.

dim(x), dim(x) <- value: Get or set dim’.

names(x), names(x) <- value: Get or set 'names’.
dimnames(x), dimnames(x) <- value: Get or set ’"dimnames’.

x[...]1, x[...]<-value: Get or set the elements of the array.

Author(s)
Kylie A. Bemis

See Also

matter

Examples

x <- matter_arr(1:1000, dim=c(10,10,10))
X

matter_fct-class Out-of-Memory Factors

Description

The matter_fct class implements out-of-memory factors.

Usage

Instance creation

matter_fct(data, levels, type = "integer”, path = NULL,
length = NA_integer_, names = NULL, offset = @, extent = NA_real_,
readonly = NA, labels = as.character(levels), ...)

Additional methods documented below

matter_fct-class

Arguments

data

levels

type
path

length
names

offset

extent

readonly
labels

Value

25

An optional data vector which will be initially written to the data in virtual
memory if provided.

The levels of the factor.
Should be ’integer’ type for factors.

A ’character’ vector of the path(s) to the file(s) where the data are stored. If
’NULL’, then a temporary file is created using tempfile.

The length of the factor.
The names of the data elements.

A vector giving the offsets in number of bytes from the beginning of each file in
"path’, specifying the start of the data to be accessed for each file.

A vector giving the length of the data for each file in ’path’, specifying the
number of elements of size ’type’ to be accessed from each file.

Whether the data and file(s) should be treated as read-only or read/write.
An optional character vector of labels for the factor levels.

Additional arguments to be passed to constructor.

An object of class matter_fct.

Slots

data: This slot stores any information necessary to access the data for the object (which may
include the data itself and/or paths to file locations, etc.).

type: The storage mode of the accessed data when read into R. This is a ’factor’ with levels 'raw’,
"logical’, ’integer’, ‘numeric’, or ’character’.

dim: Either 'NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either ’'NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
’NULL for vectors.

levels: The levels of the factor.
labels: The labels for the levels.

Extends

matter, matter_vec

Creating Objects

matter_fct instances can be created through matter_fct() or matter().

26

Methods
Standard generic methods:
length(x), length(x) <- value: Get or set length.

names(x), names(x) <- value: Get or set 'names’.

x[i], x[i] <- value: Get or set the elements of the factor.

matter_list-class

levels(x), levels(x) <- value: Get or set the levels of the factor.

Author(s)
Kylie A. Bemis

See Also

matter, matter_vec

Examples

x <- matter_fct(rep(c("a", "a", "b"), 5), levels=c("a",

X

"y "C”))
’

matter_list-class Out-of-Memory Lists of Vectors

Description

The matter_list class implements out-of-memory lists.

Usage

Instance creation
matter_list(data, type = "double”, path = NULL,

lengths = NA_integer_, names = NULL, offset = @, extent = NA_real_,

readonly = NA, ...)

Additional methods documented below

Arguments
data An optional data vector which will be initially written to virtual memory if pro-
vided.
type A ’character’ vector giving the storage mode of the data in virtual memory. Al-

lowable values are the C types (’char’, 'uchar’, short’, ’ushort’, ’int’, ’uint’,
’long’, ’ulong’, *float’) and their R equivalents (raw’, ’logical’, ’integer’, nu-

meric’). See ?datatypes for details.

matter_list-class

path

lengths
names

offset

extent

readonly

Value

27

A ’character’ vector of the path(s) to the file(s) where the data are stored. If
’NULL’, then a temporary file is created using tempfile.

The lengths of the list elements.
The names of the list elements.

A vector giving the offsets in number of bytes from the beginning of each file in
"path’, specifying the start of the data to be accessed for each file.

A vector giving the length of the data for each file in ’path’, specifying the
number of elements of size ’type’ to be accessed from each file.

Whether the data and file(s) should be treated as read-only or read/write.

Additional arguments to be passed to constructor.

An object of class matter_list.

Slots

data: This slot stores any information necessary to access the data for the object (which may
include the data itself and/or paths to file locations, etc.).

type: The storage mode of the accessed data when read into R. This is a ’factor’ with levels 'raw’,
"logical’, ’integer’, *numeric’, or ’character’.

dim: Either "NULL for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either ’'NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
’NULL for vectors.

Extends

matter

Creating Objects

matter_list instances can be created through matter_list() or matter().

Methods

Standard generic methods:

x[[i1], xL[i1] <- value: Get or set a single element of the list.

x[[i, j1]1: Get the jth sub-elements of the ith element of the list.

x[i], x[i] <- value: Get or set the ith elements of the list.

lengths(x): Get the lengths of all elements in the list.

28 matter_str-class

Author(s)
Kylie A. Bemis

See Also

matter

Examples

x <- matter_list(list(c(TRUE,FALSE), 1:5, c(1.11, 2.22, 3.33)), lengths=c(2,5,3))
x[]

x[1]

x[[1]]

x[[3,1]1]
x[[2,1:3]]

matter_str-class Out-of-Memory Strings

Description

The matter_str class implements out-of-memory strings.

Usage

Instance creation

matter_str(data, type = "character”, path = NULL,
nchar = NA_integer_, names = NULL, offset = @, extent = NA_real_,
readonly = NA, encoding = "unknown”, ...)

Additional methods documented below

Arguments

data An optional data vector which will be initially written to virtual memory if pro-
vided.

type A ’character’ vector giving the storage mode of the data in virtual memory. Al-
lowable values are the C types ('char’, 'uchar’, short’, 'ushort’, ’int’, "uint’,
’long’, ’ulong’, *float’) and their R equivalents (Craw’, ’logical’, ’integer’, 'nu-
meric’). See ?datatypes for details.

path A ’character’ vector of the path(s) to the file(s) where the data are stored. If
"NULL’, then a temporary file is created using tempfile.

nchar A vector giving the length of each element of the character vector.

names The names of the data elements.

matter_str-class 29

offset A vector giving the offsets in number of bytes from the beginning of each file in
‘path’, specifying the start of the data to be accessed for each file.

extent A vector giving the length of the data for each file in ’path’, specifying the
number of elements of size 'type’ to be accessed from each file.

readonly Whether the data and file(s) should be treated as read-only or read/write.

encoding The character encoding to use (if known).

Additional arguments to be passed to constructor.

Value

An object of class matter_str.

Slots

data: This slot stores any information necessary to access the data for the object (which may
include the data itself and/or paths to file locations, etc.).

type: The storage mode of the accessed data when read into R. This is a ’factor’ with levels 'raw’,
"logical’, “integer’, ‘numeric’, or ’character’.

dim: Either "NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either 'NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL’ for vectors.

encoding: The string encoding used.

Extends

matter_list

Creating Objects

matter_str instances can be created through matter_str() or matter().

Methods
Standard generic methods:

x[1], x[i] <- value: Get or set the string elements of the vector.

lengths(x): Get the number of characters (in bytes) of all string elements in the vector.

Author(s)
Kylie A. Bemis

See Also

matter

30 prcomp

Examples

x <- matter_str(rep(c(”"hello”, "world!"), 50))
X

prcomp Principal Components Analysis for “matter” Matrices

Description

This method allows computation of a truncated principal components analysis of a matter_mat
matrix using the implicitly restarted Lanczos method irlba.

Usage
S4 method for signature 'matter_mat'
prcomp(x, n = 3, retx = TRUE, center = TRUE, scale. = FALSE, ...)

Arguments
X A matter matrix.
n The number of principal componenets to return, must be less than min(dim(x)).
retx A logical value indicating whether the rotated variables should be returned.
center A logical value indicating whether the variables should be shifted to be zero-

centered, or a centering vector of length equal to the number of columns of x.
The centering is performed implicitly and does not change the out-of-memory
data in x.

scale. A logical value indicating whether the variables should be scaled to have unit
variance, or a scaling vector of length equal to the number of columns of x. The
scaling is performed implicitly and does not change the out-of-memory data in
X.

Additional options passed to irlba.

Value

An object of class ‘prcomp’. See ?prcomp for details.

Note

The ’tol’ truncation argument found in the default prcomp method is not supported. In place of the
truncation tolerance in the original function, the argument n explicitly gives the number of principal
components to return. A warning is generated if the argument ’tol’ is used.

Author(s)
Kylie A. Bemis

profmem 31

See Also

bigglm
Examples
set.seed(1)
x <- matter_mat(rnorm(1000), nrow=100, ncol=10)

prcomp(x)

profmem Profile Memory Use

Description

These are utility functions for profiling memory used by objects and by R during the execution of
an expression.

Usage

profmem(expr)

mem(x, reset = FALSE)

Arguments
expr An expression to be evaluated.
X An object, to identify how much memory it is using.
reset Should the maximum memory used by R be reset?
Details

These are wrappers around the built-in gc function. Note that they only count memory managed by
R.

Value

For profmem, a vector giving [1] the amount of memory used at the start of execution, [2] the
amount of memory used at the end of execution, [3] the maximum amount of memory used during
execution, [4] the memory overhead as defined by the maximum memory used minus the starting
memory use, and [5] the execution time in seconds.

For mem, either a single numeric value giving the memory used by an object, or a vector providing
a more readable version of the information returned by gc (see its help page for details).

Author(s)
Kylie A. Bemis

32 sparse_arr-class

See Also
gc,
Examples
x <- 1:100
mem(x)

profmem(mean(x + 1))

sparse_arr-class Sparse Vectors and Matrices

Description

The sparse_mat class implements sparse matrices, potentially stored out-of-memory. Both compressed-
sparse-column (CSC) and compressed-sparse-row (CSR) formats are supported. Sparse vectors are
also supported through the sparse_vec class.

Usage

Instance creation

sparse_mat(data, index, type = "double”,
nrow = NA_integer_, ncol = NA_integer_, dimnames = NULL,
pointers = NULL, domain = NULL, offset = @QL, rowMaj = FALSE,
tolerance = c(abs=0), sampler = "none"”, ...)

sparse_vec(data, index, type = "double”,
length = NA_integer_, names = NULL,
domain = NULL, offset = @L, rowMaj = FALSE,
tolerance = c(abs=0), sampler = "none"”, ...)

Check if an object is a sparse matrix
is.sparse(x)

Coerce an object to a sparse matrix
as.sparse(x, ...)

Additional methods documented below

Arguments

data TODO
index TODO

sparse_arr-class 33

type A ’character’ vector giving the storage mode of the data in virtual memory. Al-
lowable values are R numeric and logical types (’logical’, ’integer’, 'numeric’)
and their C equivalents.

nrow, ncol, length
The number of rows and columns, or the length of the array.

domain Either NULL or a vector with length equal to the number of rows (for CSC
matrices) or the number of columns (for CSR matrices). If NULL, then the
’key’ portion of the key-value pairs that make up the non-zero elements are
assumed to be row or column indices. If a vector, then they define the how
the non-zero elements are matched to rows or columns. The ’key’ portion of
each non-zero element is matched against this canonical set of keys using binary
search. Allowed types for keys are ’integer’, numeric’, and ’character’.

offset TODO

rowMaj Whether the data should be stored using compressed-sparse-row (CSR) repre-
sentation (as opposed to compressed-sparse-column (CSC) representation). De-
faults to 'FALSE’, for efficient access to columns. Set to "TRUE’ for more
efficient access to rows instead.

dimnames The names of the sparse matrix dimensions.
names The names of the sparse vector elements.
tolerance For numeric’ keys, the tolerance used for floating-point equality when deter-

mining key matches. The vector should be named. Use *absolute’ to use abso-
lute differences, and ’relative’ to use relative differences.

sampler In the case of collisions when matching keys, how the row- or column-vectors
should be combined. Acceptable values are "identity", "min", "max", "sum",
and "mean". A user-specified function may also be provided. Using "identity"
means collisions result in an error. Using "sum" or "mean" results in binning all

matches.
pointers TODO
X An object to check if it is a sparse matrix or coerce to a sparse matrix.

Additional arguments to be passed to constructor.

Value

An object of class sparse_mat.

Slots

data: This slot stores any information necessary to access the data for the object (which may
include the data itself and/or paths to file locations, etc.).

type: The storage mode of the accessed data when read into R. This is a ’factor’ with levels 'raw’,
"logical’, ’integer’, *numeric’, or ’character’.

dim: Either "NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

34 sparse_arr-class

dimnames: Either ’'NULL’ or the names for the dimensions. If not 'NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
"NULL’ for vectors.

index: TODO
pointers: TODO
domain: TODO
offset: TODO

tolerance: The tolerance to be used when matching indices from index to the domain. An at-
tribute "tol_type’ gives whether "absolute’ or ’relative’ differences should be used for the com-
parison.

sampler: This is a function determining how the row- or column-vectors should be combined (or
not) when index matching collisions occur.

ops: Deferred arithmetic operations.

transpose Indicates whether the data is stored in row-major order (TRUE) or column-major order
(FALSE). For a matrix, switching the order that the data is read is equivalent to transposing
the matrix (without changing any data).

Warning

If °data’ is given as a length-2 list of key-value pairs, no checking is performed on the validity of
the key-value pairs, as this may be a costly operation if the list is stored in virtual memory. Each
element of the "keys’ element must be sorted in increasing order, or behavior may be unexpected.

Assigning a new data element to the sparse matrix will always sort the key-value pairs of the row
or column into which it was assigned.
Extends

matter

Creating Objects

sparse_mat instances can be created through sparse_mat ().

Methods
Standard generic methods:

x[i, j, ..., drop], x[i, j]<-value: Get or set the elements of the sparse matrix. Use drop =
NULL to return a subset of the same class as the object.
cbind(x, ...), rbind(x, ...): Combine sparse matrices by row or column.

t(x): Transpose a matrix. This is a quick operation which only changes metadata and does not
touch the data representation.

Author(s)
Kylie A. Bemis

stream-stats 35

See Also

matter
Examples
x <- matrix(rbinom(100, 1, 0.2), nrow=10, ncol=10)

y <- sparse_mat(x)
y[]

stream-stats Streaming Summary Statistics

Description

These functions allow calculation of streaming statistics. They are useful, for example, for calcu-
lating summary statistics on small chunks of a larger dataset, and then combining them to calculate
the summary statistics for the whole dataset.

This is not particularly interesting for simpler, commutative statistics like sum(), but it is useful for
calculating non-commutative statistics like running sd() or var () on pieces of a larger dataset.

Usage
calculate streaming univariate statistics
s_range(x, ..., na.rm = FALSE)
s_min(x, ..., na.rm = FALSE)
s_max(x, ..., na.rm = FALSE)
s_prod(x, ..., na.rm = FALSE)
s_sum(x, ..., na.rm = FALSE)
s_mean(x, ..., na.rm = FALSE)
s_var(x, ..., na.rm = FALSE)
s_sd(x, ..., na.rm = FALSE)
s_any(x, ..., na.rm = FALSE)
s_all(x, ..., na.rm = FALSE)
s_nnzero(x, ..., na.rm = FALSE)

calculate streaming matrix statistics

36

stream-stats

s_rowstats(x, stat, group, na.rm = FALSE, ...)

s_colstats(x, stat, group, na.rm = FALSE, ...)

calculate combined summary statistics

stat_c(x, vy,

Arguments

group

na.rm

Details

.

Object(s) on which to calculate a summary statistic, or a summary statistic to
combine.
The name of a summary statistic to compute over the rows or columns of a ma-

non "non non non

trix. Allowable values include: "range", "min", "max", "prod", "sum", "mean",

non

"var", "sd", "any", "all", and "nnzero".

A factor or vector giving the grouping. If not provided, no grouping will be
used.

If TRUE, remove NA values before summarizing.

These summary statistics methods are intended to be applied to chunks of a larger dataset. They
can then be combined either with the individual summary statistic functions, or with stat_c(), to
produce the combined summary statistic for the full dataset. This is most useful for calculating
running variances and standard deviations iteratively, which would be difficult or impossible to
calculate on the full dataset.

The variances and standard deviations are calculated using running sum of squares formulas which
can be calculated iteratively and are accurate for large floating-point datasets (see reference).

Value

For all univariate functions except s_range(), a single number giving the summary statistic. For
s_range(), two numbers giving the minimum and the maximum values.

For s_rowstats() and s_colstats(), a vector of summary statistics.

Author(s)

Kylie A. Bemis

References

B. P. Welford, “Note on a Method for Calculating Corrected Sums of Squares and Products,” Tech-
nometrics, vol. 4, no. 3, pp. 1-3, Aug. 1962.

B. O’Neill, “Some Useful Moment Results in Sampling Problems,” The American Statistician, vol.
68, no. 4, pp. 282-296, Sep. 2014.

See Also

Summary

struct 37

Examples

set.seed(1)
X <- sample(1:100, size=10)
y <- sample(1:100, size=10)

sx <- s_var(x)
sy <- s_var(y)

var(c(x, ¥))
stat_c(sx, sy) # should be the same

sxy <- stat_c(sx, sy)

calculate with 1 new observation
var(c(x, y, 99))
stat_c(sxy, 99)

calculate over rows of a matrix
set.seed(2)

A <- matrix(rnorm(100), nrow=10)
B <- matrix(rnorm(100), nrow=10)

sx <- s_rowstats(A, "var")
sy <- s_rowstats(B, "var")

apply(cbind(A, B), 1, var)
stat_c(sx, sy) # should be the same

struct C-Style Structs Stored in Virtual Memory

Description

This is a convenience function for creating and reading C-style structs in a single file stored in
virtual memory.

Usage
struct(..., filename = NULL, readonly = FALSE, offset = @)
Arguments
Named integers giving the members of the struct. They should be of the form
name=c (type=length).
filename A single string giving the name of the file.
readonly Should the file be treated as read-only?

offset A scalar integer giving the offset from the beginning of the file.

38 summary-stats

Details

This is simply a convenient wrapper around the wrapper around matter_list that allows easy
specification of C-style structs in a file.

Value

A object of class matter_list.

Author(s)
Kylie A. Bemis

See Also

matter_list
Examples
x <= struct(first=c(int=1), second=c(double=1))

x$first <- 2L
x$second <- 3.33

x$first
x$second

summary-stats Summary Statistics for “matter” Objects

Description

These functions efficiently calculate summary statistics for matter_arr objects. For matrices, they
operate efficiently on both rows and columns.

Usage

S4 method for signature 'matter_arr'’
range(x, ..., na.rm)

S4 method for signature 'matter_arr'’
min(x, ..., na.rm)

S4 method for signature 'matter_arr'’
max(x, ..., na.rm)

S4 method for signature 'matter_arr'’
prod(x, ..., na.rm)

S4 method for signature 'matter_arr'
mean(x, ..., ha.rm)

S4 method for signature 'matter_arr'
sum(x, ..., ha.rm)

summary-stats 39

S4 method for signature 'matter_arr'’
sd(x, na.rm)
S4 method for signature 'matter_arr'’
var(x, na.rm)
S4 method for signature 'matter_arr'’

any(x, ..., na.rm)

S4 method for signature 'matter_arr'

all(x, ..., na.rm)

S4 method for signature 'matter_mat'

colMeans(x, na.rm, dims =1, ...)

S4 method for signature 'matter_mat'

colSums(x, na.rm, dims =1, ...)

S4 method for signature 'matter_mat'

rowMeans(x, na.rm, dims =1, ...)

S4 method for signature 'matter_mat'

rowSums(x, na.rm, dims =1, ...)
Arguments

X A matter_arr object.

Arguments passed to chunk_lapply ().
na.rm If TRUE, remove NA values before summarizing.
dims Not used.

Details

These summary statistics methods operate on chunks of data which are loaded into memory and
then freed before reading the next chunk.

For row and column summaries on matrices, the iteration scheme is dependent on the layout of the
data. Column-major matrices will always be iterated over by column, and row-major matrices will
always be iterated over by row. Row statistics on column-major matrices and column statistics on
row-major matrices are calculated iteratively.

Variance and standard deviation are calculated using a running sum of squares formula which can
be calculated iteratively and is accurate for large floating-point datasets (see reference).
Value

For mean, sd, and var, a single number. For the column summaries, a vector of length equal to the
number of columns of the matrix. For the row summaries, a vector of length equal to the number of
rows of the matrix.

Author(s)
Kylie A. Bemis

References

B. P. Welford, “Note on a Method for Calculating Corrected Sums of Squares and Products,” Tech-
nometrics, vol. 4, no. 3, pp. 1-3, Aug. 1962.

40

See Also

stream_stat

Examples
X <- matter(1:100, nrow=10, ncol=10)

sum(x)
mean(x)
var(x)
sd(x)

colSums(x)
colMeans(x)

rowSums (x)
rowMeans(x)

uuid

uuid Universally Unique Identifiers

Description

Generate a UUID.

Usage

uuid(uppercase = FALSE)
hex2raw(x)

raw2hex(x, uppercase = FALSE)

Arguments
X A vector of to convert between raw bytes and hexadecimal strings.
uppercase Should the result be in uppercase?

Details

uuid generates a random universally unique identifier.
hex2raw converts a hexadecimal string to a raw vector.

raw2hex converts a raw vector to a hexadecimal string.

uuid

Value

For uuid, a list of length 2:

* string: A character vector giving the UUID.

* bytes: The raw bytes of the UUID.

For hex2raw, a raw vector.

For raw2hex, a character vector of length 1.

Author(s)
Kylie A. Bemis

Examples

id <= uuid()

id
hex2raw(id$string)
raw2hex(id$bytes)

41

Index

matter-class, 18
matter-datatypes, 20
matter_arr-class, 22
matter_fct-class, 24
matter_list-class, 26
matter_str-class, 28
struct, 37

x arith

deferred-ops, 15

* array

matter-class, 18
matter_arr-class, 22
matter_fct-class, 24
matter_list-class, 26
matter_str-class, 28
sparse_arr-class, 32
struct, 37

x classes

drle-class, 16
matter-class, 18
matter_arr-class, 22
matter_fct-class, 24
matter_list-class, 26
matter_str-class, 28
sparse_arr-class, 32

* internal

matter-utils, 22

* methods

chunkApply, 8
colscale, 11
colStats, 12
colsweep, 14
deferred-ops, 15
stream-stats, 35
summary-stats, 38

* misc

matter-options, 21

+* models

42

biglm, 4
+ multivariate
prcomp, 30
* regression
biglm, 4
* univar
colStats, 12
stream-stats, 35
summary-stats, 38
* utilities
asearch, 2
binvec, 5
bsearch, 6
checksum, 7
findpeaks, 17
matter-utils, 22
profmem, 31
struct, 37
uuid, 40
.colStats (colStats), 12
.rowStats (colStats), 12
[,atoms,ANY,ANY,ANY-method
(matter-class), 18
[,atoms-method (matter-class), 18
[,drle,ANY,ANY,ANY-method (drle-class),
16
[,drle_fct,ANY,ANY,ANY-method
(drle-class), 16
[,matter_arr,ANY,ANY,ANY-method
(matter_arr-class), 22
[,matter_arr-method (matter_arr-class),
22
[,matter_fct,ANY,ANY,ANY-method
(matter_fct-class), 24
[,matter_fct-method (matter_fct-class),
24
[,matter_list,ANY,ANY,ANY-method
(matter_list-class), 26
[,matter_list-method

INDEX

(matter_list-class), 26
[,matter_mat,ANY,ANY,ANY-method
(matter_arr-class), 22
[,matter_mat-method (matter_arr-class),
22
[,matter_str,ANY,ANY, ANY-method
(matter_str-class), 28
[,matter_str-method (matter_str-class),
28
[,sparse_arr,ANY,ANY, ANY-method
(sparse_arr-class), 32
[<-,matter_arr,ANY,ANY, ANY-method
(matter_arr-class), 22
[<-,matter_arr-method
(matter_arr-class), 22
[<-,matter_fct, ANY, ANY, ANY-method
(matter_fct-class), 24
[<-,matter_fct-method
(matter_fct-class), 24
[<-,matter_list,ANY,ANY,ANY-method
(matter_list-class), 26
[<-,matter_list-method
(matter_list-class), 26
[<-,matter_mat, ANY,ANY, ANY-method
(matter_arr-class), 22
[<-,matter_mat-method
(matter_arr-class), 22
[<-,matter_str,ANY,ANY, ANY-method
(matter_str-class), 28
[<-,matter_str-method
(matter_str-class), 28
[<-,sparse_arr,ANY,ANY, ANY-method
(sparse_arr-class), 32
[<-,sparse_arr-method
(sparse_arr-class), 32
[[,atoms,ANY,ANY-method (matter-class),
18
[[,atoms-method (matter-class), 18
[[,matter_list,ANY,ANY-method
(matter_list-class), 26
[[,matter_list-method
(matter_list-class), 26
[[<-,matter_list,ANY,ANY-method
(matter_list-class), 26
[[<-,matter_list-method
(matter_list-class), 26
$,matter_list-method
(matter_list-class), 26

43

$<-,matter_list-method
(matter_list-class), 26
%*%,matrix,matter_mat-method
(matter_arr-class), 22
%*%,matrix, sparse_mat-method
(sparse_arr-class), 32
%*%,matter_mat,matrix-method
(matter_arr-class), 22
%*%,matter_mat,vector-method
(matter_arr-class), 22
%*%,sparse_mat,matrix-method
(sparse_arr-class), 32
%*%,sparse_mat,vector-method
(sparse_arr-class), 32
%*%,vector,matter_mat-method
(matter_arr-class), 22
%*%,vector, sparse_mat-method
(sparse_arr-class), 32

adata (matter-class), 18

adata,matter-method (matter-class), 18

aindex (sparse_arr-class), 32

aindex, sparse_arr-method
(sparse_arr-class), 32

all,matter_arr-method (summary-stats),
38

any,matter_arr-method (summary-stats),
38

apply, 10

apply (chunkApply), 8

apply,matter_mat-method (chunkApply), 8

Arith, 16

Arith (deferred-ops), 15

Arith,array,matter_arr-method
(deferred-ops), 15

Arith,array, sparse_arr-method
(deferred-ops), 15

Arith,matter_arr,array-method
(deferred-ops), 15

Arith,matter_arr,vector-method
(deferred-ops), 15

Arith,sparse_arr,array-method
(deferred-ops), 15

Arith,sparse_arr,vector-method
(deferred-ops), 15

Arith,vector,matter_arr-method
(deferred-ops), 15

Arith,vector,sparse_arr-method
(deferred-ops), 15

44

as

as.

as.

as.

as.

as

as

as

as.

as.

as.

as.

as.

as.

as.
as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

.altrep (matter-utils), 22
as.

altrep,matter_arr-method
(matter-utils), 22
altrep,matter_fct-method
(matter-utils), 22
altrep,matter_list-method
(matter-utils), 22
altrep,matter_mat-method
(matter-utils), 22
altrep,matter_str-method
(matter-utils), 22

.altrep,matter_vec-method

(matter-utils), 22

.array,matter_arr-method

(matter_arr-class), 22

.array,sparse_arr-method

(sparse_arr-class), 32
character,matter_str-method
(matter_str-class), 28
data.frame, atoms-method
(matter-class), 18
data.frame,drle-method (drle-class),
16
data.frame,stream_stat-method
(stream-stats), 35
factor,drle_fct-method (drle-class),
16
factor,matter_fct-method
(matter_fct-class), 24
integer,drle-method (drle-class), 16
integer,matter_arr-method
(matter_arr-class), 22
list,atoms-method (matter-class), 18
list,drle-method (drle-class), 16
list,matter_list-method
(matter_list-class), 26
logical,matter_arr-method
(matter_arr-class), 22
matrix,matter_arr-method
(matter_arr-class), 22
matrix, sparse_arr-method
(sparse_arr-class), 32
matter (matter-class), 18
numeric,drle-method (drle-class), 16
numeric,matter_arr-method
(matter_arr-class), 22
raw,matter_arr-method
(matter_arr-class), 22

INDEX

as.sparse (sparse_arr-class), 32
as.vector,drle-method (drle-class), 16
as.vector,matter_arr-method
(matter_arr-class), 22
as.vector,matter_str-method
(matter_str-class), 28
asearch, 2, 7
atomdata (matter-class), 18
atomdata,matter-method (matter-class),
18
atomdata, sparse_arr-method
(sparse_arr-class), 32
atomdata<- (matter-class), 18
atomdata<-,matter-method
(matter-class), 18
atomindex (sparse_arr-class), 32
atomindex, sparse_arr-method
(sparse_arr-class), 32
atomindex<- (sparse_arr-class), 32
atomindex<-, sparse_arr-method
(sparse_arr-class), 32
atoms (matter-class), 18
atoms-class (matter-class), 18

bigglm, 4, 31

bigglm (biglm), 4

bigglm,formula,matter_mat-method
(biglm), 4

bigglm,formula, sparse_mat-method
(biglm), 4

bigglm.out (matter-utils), 22

biglm, 4

binvec, 5

bplapply, 9,11, 13

bsearch, 3, 6

c,atoms-method (matter-class), 18

c,drle-method (drle-class), 16

c,matter-method (matter-class), 18

c,matter_arr-method (matter_arr-class),
22

c,matter_list-method
(matter_list-class), 26

c,matter_str-method (matter_str-class),
28

cbind2,atoms,ANY-method (matter-class),
18

cbind2,matter_mat,matter_mat-method
(matter_arr-class), 22

INDEX

cbind2,matter_mat,matter_vec-method
(matter_arr-class), 22
cbind2,matter_vec,matter_mat-method
(matter_arr-class), 22
cbind2,matter_vec,matter_vec-method
(matter_arr-class), 22
cbind2, sparse_mat, sparse_mat-method
(sparse_arr-class), 32
checksum, 7
checksum, atoms-method (checksum), 7
checksum,matter_-method (checksum), 7
chunk_apply (chunkApply), 8
chunk_colapply (chunkApply), 8
chunk_lapply (chunkApply), 8
chunk_mapply (chunkApply), 8
chunk_rowapply (chunkApply), 8
chunkApply, 8
chunkLapply (chunkApply), 8
chunkMapply (chunkApply), 8
chunksize (matter-utils), 22
chunksize,ANY-method (matter-utils), 22
chunksize<- (matter-utils), 22
chunksize<-,ANY-method (matter-utils),
22
class:atoms (matter-class), 18
class:drle (drle-class), 16
class:drle_fct (drle-class), 16
class:matter (matter-class), 18
class:matter_arr (matter_arr-class), 22
class:matter_fct (matter_fct-class), 24
class:matter_list (matter_list-class),
26
class:matter_mat (matter_arr-class), 22
class:matter_str (matter_str-class), 28
class:matter_vec (matter_arr-class), 22
class:sparse_arr (sparse_arr-class), 32
class:sparse_mat (sparse_arr-class), 32
class:sparse_vec (sparse_arr-class), 32
colMeans,matter_mat-method
(summary-stats), 38
colMeans, sparse_mat-method
(summary-stats), 38
colscale, 11
colscale,ANY-method (colscale), 11
colSds (summary-stats), 38
colSds,ANY-method (summary-stats), 38
colStats, 12
colStats,ANY-method (colStats), 12

45

colStats,matter_mat-method (colStats),
12

colStats, sparse_mat-method (colStats),
12

colstreamStats (stream-stats), 35

colSums, 13

colSums,matter_mat-method
(summary-stats), 38

colSums, sparse_mat-method
(summary-stats), 38

colsweep, 14

colsweep,ANY-method (colsweep), 14

colsweep,matter_mat-method (colsweep),
14

colsweep, sparse_mat-method (colsweep),
14

colVars (summary-stats), 38

colVars, ANY-method (summary-stats), 38

combine, ANY,ANY-method (matter-utils),
22

combine, atoms,ANY-method
(matter-class), 18

combine,drle,drle-method (drle-class),
16

combine,drle,numeric-method
(drle-class), 16

combine,drle_fct,drle_fct-method
(drle-class), 16

combine,matter_arr,ANY-method
(matter_arr-class), 22

combine,matter_fct,ANY-method
(matter_fct-class), 24

combine,matter_list,ANY-method
(matter_list-class), 26

combine,matter_str,ANY-method
(matter_str-class), 28

combine,numeric,drle-method
(drle-class), 16

combine, stream_stat,ANY-method
(stream-stats), 35

combiner (matter-utils), 22

combiner,ANY-method (matter-utils), 22

combiner<- (matter-utils), 22

combiner<-,ANY-method (matter-utils), 22

Compare, 16

Compare (deferred-ops), 15

data:matter_ex (matter-utils), 22
data:matter_msi (matter-utils), 22

46

data:matter_sim (matter-utils), 22
datamode (matter-utils), 22
datamode, ANY-method (matter-utils), 22
datamode<- (matter-utils), 22
datamode<-,ANY-method (matter-utils), 22
datatypes (matter-datatypes), 20
deferred-ops, 15
describe_for_display (matter-utils), 22
describe_for_display,ANY-method
(matter-utils), 22
describe_for_display,atoms-method
(matter-utils), 22
describe_for_display,drle-method
(matter-utils), 22
describe_for_display,drle_fct-method
(matter-utils), 22
describe_for_display,matter_arr-method
(matter-utils), 22
describe_for_display,matter_fct-method
(matter-utils), 22
describe_for_display,matter_list-method
(matter-utils), 22
describe_for_display,matter_mat-method
(matter-utils), 22
describe_for_display,matter_str-method
(matter-utils), 22
describe_for_display,matter_vec-method
(matter-utils), 22
describe_for_display, sparse_mat-method
(matter-utils), 22
describe_for_display, sparse_vec-method
(matter-utils), 22
digest, 8
dim,atoms-method (matter-class), 18
dim,matter-method (matter-class), 18
dim,matter_list-method
(matter_list-class), 26
dim,matter_str-method
(matter_str-class), 28
dim,matter_vec-method
(matter_arr-class), 22
dim, sparse_vec-method
(sparse_arr-class), 32
dim<-,matter-method (matter-class), 18
dim<-,matter_arr-method
(matter_arr-class), 22
dim<-,matter_vec-method
(matter_arr-class), 22

INDEX

dimnames,matter-method (matter-class),
18

dimnames<-,matter,ANY-method
(matter-class), 18

dims,atoms-method (matter-class), 18

domain (sparse_arr-class), 32

domain, sparse_arr-method
(sparse_arr-class), 32

domain<- (sparse_arr-class), 32

domain<-, sparse_arr-method
(sparse_arr-class), 32

drle, 16

drle (drle-class), 16

drle-class, 16

drle_fct (drle-class), 16

drle_fct-class (drle-class), 16

Encoding,matter_str-method
(matter_str-class), 28

Encoding<-,matter_str-method
(matter_str-class), 28

filemode (matter-utils), 22

filemode, ANY-method (matter-utils), 22
filemode<- (matter-utils), 22
filemode<-,ANY-method (matter-utils), 22
findInterval, 7

findpeaks, 17

gc, 31, 32
hex2raw (uuid), 40

irlba, 30

is.drle (drle-class), 16
is.matter (matter-class), 18
is.sparse (sparse_arr-class), 32

keys (matter-utils), 22
keys,ANY-method (matter-utils), 22
keys, sparse_arr-method
(sparse_arr-class), 32
keys<- (matter-utils), 22
keys<-,ANY-method (matter-utils), 22
keys<-, sparse_arr-method
(sparse_arr-class), 32

lapply, 10
length,atoms-method (matter-class), 18
length,drle-method (drle-class), 16

INDEX

length,matter-method (matter-class), 18

length,matter_list-method
(matter_list-class), 26

length,matter_str-method
(matter_str-class), 28

length, sparse_arr-method
(sparse_arr-class), 32

length<-,matter-method (matter-class),
18

lengths,atoms-method (matter-class), 18

lengths,matter_list-method
(matter_list-class), 26

lengths,matter_str-method
(matter_str-class), 28

lengths, sparse_arr-method
(sparse_arr-class), 32

levels,drle_fct-method (drle-class), 16

levels,matter_fct-method
(matter_fct-class), 24

levels<-,drle_fct-method (drle-class),
16

levels<-,matter_fct-method
(matter_fct-class), 24

Im.prof (matter-utils), 22

locmax (findpeaks), 17

Logic, 16

Logic (deferred-ops), 15

mapply, 10

match, 7

Math, 16

matter, 4, 7, 15, 19, 24-30, 34, 35
matter (matter-class), 18
matter-class, 18
matter-datatypes, 20
matter-options, 21
matter-utils, 22
matter_arr, 15, 20, 23, 38, 39
matter_arr (matter_arr-class), 22
matter_arr-class, 22

matter_ex (matter-utils), 22
matter_fct, 20, 25

matter_fct (matter_fct-class), 24
matter_fct-class, 24
matter_list, 20, 27, 29, 38
matter_list (matter_list-class), 26
matter_list-class, 26
matter_mat, 4, 20, 30

matter_mat (matter_arr-class), 22

47

matter_mat-class (matter_arr-class), 22

matter_msi (matter-utils), 22

matter_sim (matter-utils), 22

matter_str, 20, 29

matter_str (matter_str-class), 28

matter_str-class, 28

matter_vec, 20, 25, 26

matter_vec (matter_arr-class), 22

matter_vec-class (matter_arr-class), 22

max,matter_arr-method (summary-stats),
38

mean (summary-stats), 38

mean,matter_arr-method (summary-stats),
38

mem (profmem), 31

min,matter_arr-method (summary-stats),
38

msi.prof (matter-utils), 22

names,matter-method (matter-class), 18

names<-,matter-method (matter-class), 18

nnzero, sparse_arr-method
(sparse_arr-class), 32

Ops, 16
Ops (deferred-ops), 15

path (matter-class), 18
path,atoms-method (matter-class), 18
path,matter_-method (matter-class), 18
path<- (matter-class), 18
path<-,atoms-method (matter-class), 18
path<-,matter_-method (matter-class), 18
paths (matter-utils), 22
paths,ANY-method (matter-utils), 22
paths<- (matter-utils), 22
paths<-,ANY-method (matter-utils), 22
pca.prof (matter-utils), 22
pmatch, 7
pointers (sparse_arr-class), 32
pointers, sparse_arr-method
(sparse_arr-class), 32
pointers<- (sparse_arr-class), 32
pointers<-,sparse_arr-method
(sparse_arr-class), 32
prcomp, 30, 30
prcomp,matter_mat-method (prcomp), 30
prcomp.out (matter-utils), 22
preview_for_display (matter-utils), 22

48

preview_for_display,ANY-method
(matter-utils), 22
preview_for_display, atoms-method
(matter-utils), 22
preview_for_display,drle-method
(matter-utils), 22
preview_for_display,matter_arr-method
(matter-utils), 22
preview_for_display,matter_fct-method
(matter-utils), 22
preview_for_display,matter_list-method
(matter-utils), 22
preview_for_display,matter_mat-method
(matter-utils), 22
preview_for_display,matter_str-method
(matter-utils), 22
preview_for_display,matter_vec-method
(matter-utils), 22
preview_for_display, sparse_mat-method
(matter-utils), 22
preview_for_display, sparse_vec-method
(matter-utils), 22
prod,matter_arr-method (summary-stats),
38
profmem, 31

range,matter_arr-method
(summary-stats), 38

raw2hex (uuid), 40

rbind2,atoms, ANY-method (matter-class),
18

rbind2,matter_mat,matter_mat-method
(matter_arr-class), 22

rbind2,matter_mat,matter_vec-method
(matter_arr-class), 22

rbind2,matter_vec,matter_mat-method
(matter_arr-class), 22

rbind2,matter_vec,matter_vec-method
(matter_arr-class), 22

rbind2, sparse_mat, sparse_mat-method
(sparse_arr-class), 32

read_atom (matter-class), 18

read_atoms (matter-class), 18

readonly (matter-class), 18

readonly,atoms-method (matter-class), 18

readonly,matter_-method (matter-class),
18

readonly<- (matter-class), 18

INDEX

readonly<-,atoms-method (matter-class),
18

readonly<-,matter_-method
(matter-class), 18

reldiff (bsearch), 6

rle, 17

roll (matter-utils), 22

rowMeans,matter_mat-method
(summary-stats), 38

rowMeans, sparse_mat-method
(summary-stats), 38

rowscale (colscale), 11

rowscale,ANY-method (colscale), 11

rowSds (summary-stats), 38

rowSds,ANY-method (summary-stats), 38

rowStats (colStats), 12

rowStats,ANY-method (colStats), 12

rowStats,matter_mat-method (colStats),
12

rowStats, sparse_mat-method (colStats),
12

rowstreamStats (stream-stats), 35

rowSums,matter_mat-method
(summary-stats), 38

rowSums, sparse_mat-method
(summary-stats), 38

rowsweep (colsweep), 14

rowsweep, ANY-method (colsweep), 14

rowsweep,matter_mat-method (colsweep),
14

rowsweep, sparse_mat-method (colsweep),
14

rowVars (summary-stats), 38

rowVars,ANY-method (summary-stats), 38

s_all (stream-stats), 35
s_any (stream-stats), 35
s_colstats, /3

s_colstats (stream-stats), 35
s_max (stream-stats), 35
s_mean (stream-stats), 35
s_min (stream-stats), 35
s_nnzero (stream-stats), 35
s_prod (stream-stats), 35
s_range (stream-stats), 35
s_rowstats, /3

s_rowstats (stream-stats), 35
s_sd (stream-stats), 35

s_sum (stream-stats), 35

INDEX

s_var (stream-stats), 35

sampler (sparse_arr-class), 32

sampler, sparse_arr-method
(sparse_arr-class), 32

sampler<- (sparse_arr-class), 32

sampler<-,sparse_arr-method
(sparse_arr-class), 32

scale, 11, 12

scale (colscale), 11

scale,matter_mat-method (colscale), 11

sd (summary-stats), 38

sd,matter_arr-method (summary-stats), 38

sizeof (matter-utils), 22

sparse_arr, 15

sparse_arr-class, 32

sparse_mat, 4, 33

sparse_mat (sparse_arr-class), 32

sparse_mat-class (sparse_arr-class), 32

sparse_vec (sparse_arr-class), 32

sparse_vec-class (sparse_arr-class), 32

stat_c (stream-stats), 35

stream-stats, 35

stream_stat, 40

stream_stat (stream-stats), 35

struct, 37

sum,matter_arr-method (summary-stats),
38

Summary, 36

Summary (summary-stats), 38

summary-stats, 38

sweep, 14, 15

t,matter_arr-method (matter_arr-class),
22

t,matter_vec-method (matter_arr-class),
22

t,sparse_arr-method (sparse_arr-class),
32

tempfile, 23,25, 27, 28

tolerance, sparse_arr-method
(sparse_arr-class), 32

tolerance<- (sparse_arr-class), 32

tolerance<-, sparse_arr-method
(sparse_arr-class), 32

type (matter-class), 18

type,array-method (matter-utils), 22

type,atoms-method (matter-class), 18

type,drle-method (drle-class), 16

type,matter-method (matter-class), 18

49

type,vector-method (matter-utils), 22
type<- (matter-class), 18
type<-,atoms-method (matter-class), 18
type<-,matter-method (matter-class), 18

uuid, 40

var (summary-stats), 38

var,matter_arr-method (summary-stats),
38

vm_used (matter-utils), 22

vm_used, ANY-method (matter-utils), 22

vm_used, atoms-method (matter-utils), 22

vm_used,matter_-method (matter-utils),
22

write_atom (matter-class), 18
write_atoms (matter-class), 18

	asearch
	biglm
	binvec
	bsearch
	checksum
	chunkApply
	colscale
	colStats
	colsweep
	deferred-ops
	drle-class
	findpeaks
	matter-class
	matter-datatypes
	matter-options
	matter-utils
	matter_arr-class
	matter_fct-class
	matter_list-class
	matter_str-class
	prcomp
	profmem
	sparse_arr-class
	stream-stats
	struct
	summary-stats
	uuid
	Index

