Package ‘PCAtools’

June 6, 2023
Type Package
Title PCAtools: Everything Principal Components Analysis
Version 2.12.0

Description Principal Component Analysis (PCA) is a very powerful technique that has wide applica-
bility in data science, bioinformatics, and further afield. It was initially developed to anal-
yse large volumes of data in order to tease out the differences/relationships between the logi-
cal entities being analysed. It extracts the fundamental structure of the data with-
out the need to build any model to represent it. This 'summary' of the data is ar-
rived at through a process of reduction that can transform the large number of vari-
ables into a lesser number that are uncorrelated (i.e. the 'principal compo-
nents'), while at the same time being capable of easy interpretation on the original data. PCA-
tools provides functions for data exploration via PCA, and allows the user to generate publica-
tion-ready figures. PCA is performed via BiocSingular - users can also identify optimal num-
ber of principal components via different metrics, such as elbow method and Horn's paral-
lel analysis, which has relevance for data reduction in single-cell RNA-seq (scRNA-
seq) and high dimensional mass cytometry data.

License GPL-3
Depends ggplot2, ggrepel

Imports lattice, grDevices, cowplot, methods, reshape?2, stats, Matrix,
DelayedMatrixStats, DelayedArray, BiocSingular, BiocParallel,
Rcepp, dqrng

Suggests testthat, scran, BiocGenerics, knitr, Biobase, GEOquery,
hgul33a.db, ggplotify, beachmat, RMTstat, ggalt, DESeq2,
airway, org.Hs.eg.db, magrittr, rmarkdown

LinkingTo Rcpp, beachmat, BH, dqrng

URL https://github.com/kevinblighe/PCAtools

biocViews RNASeq, ATACSeq, GeneExpression, Transcription, SingleCell,
PrincipalComponent

VignetteBuilder knitr
SystemRequirements C++11
RoxygenNote 7.1.1
Encoding UTF-8

https://github.com/kevinblighe/PCAtools

biplot

git_url https://git.bioconductor.org/packages/PCAtools
git_branch RELEASE_3_17

git_last_commit 92d6e87

git_last commit_date 2023-04-25

Date/Publication 2023-06-06

Author Kevin Blighe [aut, cre],
Anna-Leigh Brown [ctb],
Vincent Carey [ctb],
Guido Hooiveld [ctb],
Aaron Lun [aut, ctb]

Maintainer Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

R topics documented:

biplot e e 2
chooseGavishDonoho 9
chooseMarchenkoPastur 10
eigencorplot L e e e e 12
findElbowPoint 15
getCOMPONENtS oL e e e e 16
getboadings e 17
getVars e e 19
pairsploto 20
parallelPCA e 24
PCA . o o e e e 26
plotloadings e e e e e 28
screeplot oL e e e e e 32

Index 37

biplot Draw a bi-plot, comparing 2 selected principal components / eigen-
vectors.
Description

Draw a bi-plot, comparing 2 selected principal components / eigenvectors.

Usage

biplot(

pcaobj,

x = "PC1",

y = HPCZH’
showLoadings = FALSE,

biplot

ntopLoadings = 5,

showLoadingsNames = if (showLoadings) TRUE else FALSE,
colLoadingsNames = "black”,

sizelLoadingsNames = 3,

boxedLoadingsNames = TRUE,

fillBoxedLoadings = alpha("white"”, 1/4),
drawConnectorsLoadings = TRUE,

widthConnectorsLoadings = 0.5,

colConnectorsLoadings = "grey50",
lengthLoadingsArrowsFactor = 1.5,
colLoadingsArrows = "black”,

widthLoadingsArrows = 0.5,

alphalLoadingsArrow = 1,

colby = NULL,

colkey = NULL,

colLegendTitle = if (!is.null(colby)) colby else NULL,

singlecol = NULL,

shape = NULL,

shapekey = NULL,

shapelLegendTitle = if (!is.null(shape)) shape else NULL,

pointSize = 3,

legendPosition = "none”,

legendLabSize = 12,

legendTitleSize = 14,

legendIconSize = 5,

encircle = FALSE,

encircleFill = TRUE,

encircleFillKey = NULL,

encircleAlpha = 1/4,

encircleLineSize = 0.25,

encircleLineCol = NULL,

ellipse = FALSE,

ellipseType = "t",

ellipseLevel = 0.95,

ellipseSegments = 51,

ellipseFill = TRUE,

ellipseFillKey = NULL,

ellipseAlpha = 1/4,

ellipselLineSize = 0.25,

ellipseLineCol = NULL,

xlim = if (showLoadings || ellipse) c(min(pcaobj$rotated[, x]) -
abs((min(pcaobj$rotated[, x1)/100) * 35), max(pcaobj$rotated[, x]) +
abs((min(pcaobj$rotated[, x1)/100) * 35)) else c(min(pcaobj$rotated[, x]1) -
abs((min(pcaobj$rotated[, x1)/100) * 10), max(pcaobj$rotated[, x]1) +
abs((min(pcaobj$rotated[, x1)/100) * 10)),

ylim = if (showLoadings || ellipse) c(min(pcaobj$rotated[, yl1) -
abs((min(pcaobj$rotated[, y1)/100) * 35), max(pcaobj$rotated[, yl) +
abs((min(pcaobj$rotated[, y1)/100) * 35)) else c(min(pcaobj$rotated[, yl) -

4 biplot

abs((min(pcaobj$rotated[, y1)/100) * 10), max(pcaobj$rotated[, yl) +
abs((min(pcaobj$rotated[, yl)/100) * 10)),

lab = rownames(pcaobj$metadata),

labSize = 3,

boxedLabels = FALSE,

selectlab = NULL,

drawConnectors = TRUE,

widthConnectors = 0.5,

colConnectors = "grey50",

max.overlaps = 15,

maxoverlapsConnectors = NULL,

min.segment.length = 0,

directionConnectors = "both”,

xlab = pasted(x, ", ", round(pcaobj$variance[x], digits

xlabAngle = 0,

xlabhjust = 0.5,

xlabvjust = 0.5,

2), "% variation”),

ylab = paste@(y, ", ", round(pcaobj$variancel[y], digits = 2), "% variation"),
ylabAngle = 0,

ylabhjust = 0.5,

ylabvjust = 0.5,

axisLabSize = 16,

title = "",

subtitle = "",

caption = "",

titleLabSize = 16,
subtitleLabSize = 12,
captionLabSize = 12,
hline = NULL,

hlineType = "longdash"”,
hlineCol = "black",
hlineWidth = 0.4,

vline = NULL,

vlineType = "longdash”,
vlineCol = "black”,
vlineWidth = 0.4,
gridlines.major = TRUE,
gridlines.minor = TRUE,
borderWidth = 0.8,

borderColour = "black”,
returnPlot = TRUE
)
Arguments
pcaobj Object of class "pca’ created by pca().
X A principal component to plot on x-axis. All principal component names are

stored in pcaobj$label.

biplot 5
y A principal component to plot on y-axis. All principal component names are
stored in pcaobj$label.
showLoadings Logical, indicating whether or not to overlay variable loadings.
ntopLoadings If showLoadings == TRUE, select this many variables based on absolute ordered
variable loading for each PC in the biplot. As a result of looking across 2 PCs,
it can occur whereby greater than this number are actually displayed.
showLoadingsNames
Logical, indicating to show variable loadings names or not.
colLoadingsNames
If *showLoadings == TRUE’, colour of text labels.
sizeloadingsNames
If ’showLoadings == TRUE’, size of text labels.
boxedLoadingsNames
Logical, if ’showLoadings == TRUE’, draw text labels in boxes.
fillBoxedLoadings

When "boxedLoadingsNames == TRUE’, this controls the background fill of the
boxes. To control both the fill and transparency, user can specify a value of the
form ’alpha(<colour>, <alpha>)’.

drawConnectorsLoadings

If ’showLoadings == TRUE’, draw line connectors to the variable loadings ar-
rows in order to fit more labels in the plot space.

widthConnectorsLoadings

If ’showLoadings == TRUE’, width of the line connectors drawn to the variable
loadings arrows.

colConnectorslLoadings

If ’showLoadings == TRUE’, colour of the line connectors drawn to the variable
loadings arrows.

lengthLoadingsArrowsFactor

If ’showLoadings == TRUE’, multiply the internally-determined length of the
variable loadings arrows by this factor.

colLoadingsArrows

If showLoadings == TRUE, colour of the variable loadings arrows.

widthLoadingsArrows

If showLoadings == TRUE, width of the variable loadings arrows.

alphaloadingsArrow

colby

colkey

collLegendTitle

singlecol

If showLoadings == TRUE, colour transparency of the variable loadings arrows.

If NULL, all points will be coloured differently. If not NULL, value is assumed
to be a column name in pcaobj$metadata relating to some grouping/categorical
variable.

Vector of name-value pairs relating to value passed to col’, e.g., c(A="forestgreen’,
B="gold").

Title of the legend for the variable specified by ’colby’.
If specified, all points will be shaded by this colour. Overrides ’col’.

biplot

shape If NULL, all points will be have the same shape. If not NULL, value is assumed
to be a column name in pcaobj$metadata relating to some grouping/categorical
variable.

shapekey Vector of name-value pairs relating to value passed to ’shape’, e.g., c(A=10,
B=21).

shapelLegendTitle

Title of the legend for the variable specified by ’shape’.
pointSize Size of plotted points.
legendPosition Position of legend (top’, ’bottom’, ’left’, 'right’, *none’).
legendLabSize Size of plot legend text.

legendTitleSize
Size of plot legend title text.

legendIconSize Size of plot legend icons / symbols.

encircle Logical, indicating whether to draw a polygon around the groups specified by
“colby’.

encircleFill Logical, if ’encircle == TRUE’, this determines whether to fill the encircled
region or not.

encircleFillKey
Vector of name-value pairs relating to value passed to ’encircleFill’, e.g., c(A="forestgreen’,
B="gold’). If NULL, the fill is controlled by whatever has already been used for
"colby’ / ’colkey’.

encircleAlpha Alpha for purposes of controlling colour transparency of the encircled region.
Used when ’encircle == TRUE’.

encirclelLineSize
Line width of the encircled line when ’encircle == TRUE’.

encirclelLineCol
Colour of the encircled line when ’encircle == TRUE’.

ellipse Logical, indicating whether to draw a data ellipse around the groups specified
by ’colby’.

ellipseType [paraphrased from https://ggplot2.tidyverse.org/reference/stat_ellipse.html] The
type of ellipse. "t" assumes a multivariate t-distribution, while "norm" assumes a
multivariate normal distribution. "euclid" draws a circle with the radius equal to
level, representing the euclidean distance from the center. This ellipse probably
won’t appear circular unless coord_fixed() is applied.

ellipselLevel [paraphrased from https://ggplot2.tidyverse.org/reference/stat_ellipse.html] The
level at which to draw an ellipse, or, if ellipseType="euclid", the radius of the
circle to be drawn.

ellipseSegments
[from https://ggplot2.tidyverse.org/reference/stat_ellipse.html] The number of
segments to be used in drawing the ellipse.

ellipseFill Logical, if ’ellipse == TRUE’, this determines whether to fill the region or not.

ellipseFillKey Vector of name-value pairs relating to value passed to "ellipseFill’, e.g., c(A="forestgreen’,
B="gold’). If NULL, the fill is controlled by whatever has already been used for
"colby’ / ’colkey’.

biplot 7

ellipseAlpha Alpha for purposes of controlling colour transparency of the ellipse region. Used
when ’ellipse == TRUE’.

ellipselLineSize
Line width of the ellipse line when ’ellipse == TRUE"’.

ellipselLineCol Colour of the ellipse line when ’ellipse == TRUE’.

x1lim Limits of the x-axis.

ylim Limits of the y-axis.

lab A vector containing labels to add to the plot.
labSize Size of labels.

boxedLabels Logical, draw text labels in boxes.
selectLab A vector containing a subset of lab to plot.

drawConnectors Logical, indicating whether or not to connect plot labels to their corresponding
points by line connectors.

widthConnectors
Line width of connectors.

colConnectors Line colour of connectors.

max.overlaps Equivalent of max.overlaps in ggrepel. Set to ’Inf’ to always display all labels
when drawConnectors = TRUE.

maxoverlapsConnectors
See max.overlaps.

min.segment.length
When drawConnectors = TRUE, specifies the minimum length of the connector
line segments.

directionConnectors
direction in which to draw connectors. ’both’, ’x’, or 'y’.

xlab Label for x-axis.

xlabAngle Rotation angle of x-axis labels.
xlabhjust Horizontal adjustment of x-axis labels.
xlabvjust Vertical adjustment of x-axis labels.
ylab Label for y-axis.

ylabAngle Rotation angle of y-axis labels.
ylabhjust Horizontal adjustment of y-axis labels.
ylabvjust Vertical adjustment of y-axis labels.
axisLabSize Size of x- and y-axis labels.

title Plot title.

subtitle Plot subtitle.

caption Plot caption.

titleLabSize Size of plot title.
subtitlelabSize
Size of plot subtitle.

captionLabSize

hline

hlineType

hlineCol
hlineWidth

vline

vlineType

vlineCol
vlineWidth

gridlines.major

gridlines.minor

borderWidth
borderColour

returnPlot

Details

biplot

Size of plot caption.

Draw one or more horizontal lines passing through this/these values on y-axis.
For single values, only a single numerical value is necessary. For multiple lines,
pass these as a vector, e.g., ¢(60,90).

Line type for hline (’blank’, ’solid’, ’dashed’, ’dotted’, ’dotdash’, ’longdash’,
’twodash’).

Colour of hline.
Width of hline.

Draw one or more vertical lines passing through this/these values on x-axis. For
single values, only a single numerical value is necessary. For multiple lines,
pass these as a vector, e.g., ¢(60,90).

Line type for vline (’blank’, ’solid’, ’dashed’, ’dotted’, ’dotdash’, ’longdash’,
twodash’).

Colour of vline.
Width of vline.

Logical, indicating whether or not to draw major gridlines.

Logical, indicating whether or not to draw minor gridlines.
Width of the border on the x and y axes.
Colour of the border on the x and y axes.

Logical, indicating whether or not to return the plot object.

Draw a bi-plot, comparing 2 selected principal components / eigenvectors.

Value

A ggplot?2 object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Examples

options(scipen=10)
options(digits=6)

col <- 20
row <- 20000

mat1l <- matrix(

rexp(colxrow, rate = 0.1),

ncol = col)

rownames(matl) <- paste@('gene', 1:nrow(matl))
colnames(matl) <- paste@('sample', 1:ncol(mat1))

chooseGavishDonoho

mat2 <- matrix(
rexp(colxrow, rate = 0.1),
ncol = col)
rownames(mat2) <- paste@('gene', 1:nrow(mat2))
colnames(mat2) <- paste@('sample', (ncol(matl)+1):(ncol(matl)+ncol(mat2)))

mat <- cbind(matl, mat2)

metadata <- data.frame(row.names = colnames(mat))
metadata$Group <- rep(NA, ncol(mat))
metadata$Group[seq(1,40,2)] <- 'A’
metadata$Group[seq(2,40,2)] <- 'B'

metadata$CRP <- sample.int(100, size=ncol(mat), replace=TRUE)
metadata$ESR <- sample.int(100, size=ncol(mat), replace=TRUE)
p <- pca(mat, metadata = metadata, removeVar = 0.1)

biplot(p)

biplot(p, colby = 'Group', shape = 'Group')

biplot(p, colby = 'Group', colkey = c(A = 'forestgreen', B = 'gold'),
legendPosition = 'right')

biplot(p, colby = 'Group', colkey = c(A='forestgreen', B='gold'),
shape = 'Group', shapekey = c(A=10, B=21), legendPosition = 'bottom')

chooseGavishDonoho Choosing PCs with the Gavish-Donoho method

Description

Use the Gavish-Donoho method to determine the optimal number of PCs to retain.

Usage
chooseGavishDonoho(x, .dim = dim(x), var.explained, noise)
Arguments
X The data matrix used for the PCA, containing variables in rows and observations
in columns. Ignored if dim is supplied.
.dim An integer vector containing the dimensions of the data matrix used for PCA.
The first element should contain the number of variables and the second element
should contain the number of observations.
var.explained A numeric vector containing the variance explained by successive PCs. This

should be sorted in decreasing order. Note that this should be the variance ex-
plained, NOT the percentage of variance explained!

10 chooseMarchenkoPastur
noise Numeric scalar specifying the variance of the random noise.

Details

Assuming that x is the sum of some low-rank truth and some i.i.d. random matrix with variance
noise, the Gavish-Donoho method defines a threshold on the singular values that minimizes the
reconstruction error from the PCs. This provides a mathematical definition of the “optimal” choice
of the number of PCs for a given matrix, though it depends on both the i.i.d. assumption and an
estimate for noise.

Value

An integer scalar specifying the number of PCs to retain. The effective limit on the variance ex-
plained is returned in the attributes.

Author(s)

Aaron Lun

See Also

chooseMarchenkoPastur, parallelPCA and findElbowPoint, for other approaches to choosing
the number of PCs.

Examples

truth <- matrix(rnorm(1000), nrow=100)
truth <- truth[,sample(ncol(truth), 1000, replace=TRUE)]
obs <- truth + rnorm(length(truth), sd=2)

Note, we need the variance explained, NOT the percentage
of variance explained!

pcs <- pca(obs)

chooseGavishDonoho(obs, var.explained=pcs$sdev*2, noise=4)

chooseMarchenkoPastur Choosing PCs with the Marchenko-Pastur limit

Description

Use the Marchenko-Pastur limit to choose the number of top PCs to retain.

Usage

chooseMarchenkoPastur(x, .dim = dim(x), var.explained, noise)

chooseMarchenkoPastur 11

Arguments
X The data matrix used for the PCA, containing variables in rows and observations
in columns. Ignored if dim is supplied.
.dim An integer vector containing the dimensions of the data matrix used for PCA.

The first element should contain the number of variables and the second element
should contain the number of observations.

var.explained A numeric vector containing the variance explained by successive PCs. This
should be sorted in decreasing order. Note that this should be the variance ex-
plained, NOT the percentage of variance explained!

noise Numeric scalar specifying the variance of the random noise.

Details

For a random matrix with i.i.d. values, the Marchenko-Pastur (MP) limit defines the maximum
eigenvalue. Let us assume that x is the sum of some low-rank truth and some i.i.d. random matrix
with variance noise. We can use the MP limit to determine the maximum variance that could be
explained by a fully random PC; all PCs that explain more variance are thus likely to contain real
structure and should be retained.

Of course, this has some obvious caveats such as the unrealistic i.i.d. assumption and the need to
estimate noise. Moreover, PCs below the MP limit are not necessarily uninformative or lacking
structure; it is just that their variance explained does not match the most extreme case that random
noise has to offer.

Value

An integer scalar specifying the number of PCs with variance explained beyond the MP limit. The
limit itself is returned in the attributes.

Author(s)

Aaron Lun

See Also

chooseGavishDonoho, parallelPCA and findElbowPoint, for other approaches to choosing the
number of PCs.

Examples

truth <- matrix(rnorm(1000), nrow=100)
truth <- truth[,sample(ncol(truth), 1000, replace=TRUE)]
obs <- truth + rnorm(length(truth), sd=2)

Note, we need the variance explained, NOT the percentage

of variance explained!

pcs <- pca(obs)

chooseMarchenkoPastur(obs, var.explained=pcs$sdev*2, noise=4)

12 eigencorplot

eigencorplot Correlate principal components to continuous variable metadata and
test significancies of these.

Description

Correlate principal components to continuous variable metadata and test significancies of these.

Usage

eigencorplot(
pcaobj,
components = getComponents(pcaobj, seq_len(10)),
metavars,
titleXx = "",
cexTitleX =1,
rotTitleX = 0,
colTitleX = "black”,
fontTitleX = 2,
titley = "",
cexTitleY =
rotTitleY =
colTitleY = "black”,
fontTitleY = 2,
cexLabX =1,
rotLabX = 0,
colLabX = "black”,
fontLabX = 2,
cexLabY = 1,
rotLabY = 0,
colLabY = "black”,
fontLabY = 2,
posLab = "bottomleft”,
col = c("blue4”, "blue3”, "blue2”, "bluel”, "white”, "red1”, "red2", "red3"”, "red4"),
posColKey = "right"”,
cexLabColKey = 1,
cexCorval =1,
colCorval = "black”,
fontCorval = 1,
scale = TRUE,
main = "",
cexMain = 2,
rotMain = 0,
colMain = "black"”,
fontMain = 2,
corFUN = "pearson",
corUSE = "pairwise.complete.obs”,

[
S =

eigencorplot
corMultipleTestCorrection = "none”,
signifsymbols = C("***", H**”, ”*”’ ””)’
signifCutpoints = c(@, 0.001, 0.01, 0.05, 1),
colFrame = "white",

plotRsquared = FALSE,
returnPlot = TRUE

Arguments

pcaobj
components
metavars
titleX
cexTitleX
rotTitleX
colTitleX
fontTitleX
titleY
cexTitleY
rotTitleY
colTitleY
fontTitleY
cexLabX
rotLabX
collLabX
fontLabX
cexLab¥Y
rotLabY¥
colLaby
fontLabY
posLab

col

posColKey

cexLabColKey

cexCorval
colCorval

fontCorval

Object of class *pca’ created by pca().

The principal components to be included in the plot.

A vector of column names in metadata representing continuos variables.

X-axis title.
X-axis title cex.
X-axis title rotation in degrees.

X-axis title colour.

X-axis title font style. 1, plain; 2, bold; 3, italic; 4, bold-italic.

Y-axis title.
Y-axis title cex.
Y-axis title rotation in degrees.

Y-axis title colour.

Y-axis title font style. 1, plain; 2, bold; 3, italic; 4, bold-italic.

X-axis labels cex.
X-axis labels rotation in degrees.

X-axis labels colour.

X-axis labels font style. 1, plain; 2, bold; 3, italic; 4, bold-italic.

Y-axis labels cex.
Y-axis labels rotation in degrees.

Y-axis labels colour.

Y-axis labels font style. 1, plain; 2, bold; 3, italic; 4, bold-italic.

13

Positioning of the X- and Y-axis labels. ’bottomleft’, bottom and left; ’topright’,

top and right; ’all’, bottom / top and left /right; *none’, no labels.

Colour shade gradient for RColorBrewer.

Position of colour key. “bottom’, ’left’, "top’, ‘right’.
Colour key labels cex.

Correlation values cex.

Correlation values colour.

Correlation values font style. 1, plain; 2, bold; 3, italic; 4, bold-italic.

14

scale

main
cexMain
rotMain
colMain
fontMain
corFUN
corUSE

eigencorplot

Logical, indicating whether or not to scale the colour range to max and min cor
values.

Plot title.

Plot title cex.

Plot title rotation in degrees.

Plot title colour.

Plot title font style. 1, plain; 2, bold; 3, italic; 4, bold-italic.
Correlation method: ’pearson’, ’spearman’, or "kendall’.

Method for handling missing values (see documentation for cor function via
?cor). everything’, *all.obs’, ’complete.obs’, 'na.or.complete’, or *pairwise.complete.obs’.

corMultipleTestCorrection

signifSymbols

signifCutpoints

colFrame
plotRsquared

returnPlot

Details

Multiple testing p-value adjustment method. Any method from stats::p.adjust()
can be used. Activating this function means that signifSymbols and signifCut-
points then relate to adjusted (not nominal) p-values.

Statistical significance symbols to display beside correlation values.

Cut-points for statistical significance.
Frame colour.
Logical, indicating whether or not to plot R-squared values.

Logical, indicating whether or not to return the plot object.

Correlate principal components to continuous variable metadata and test significancies of these.

Value

A lattice object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Examples

options(scipen=10)
options(digits=6)

col <- 20
row <- 20000

matl <- matrix(

rexp(colxrow, rate = 0.1),

ncol = col)

rownames(matl) <- paste@('gene', 1:nrow(matl))
colnames(matl) <- paste@('sample', 1:ncol(mat1))

findElIbowPoint 15

mat2 <- matrix(
rexp(colxrow, rate = 0.1),
ncol = col)
rownames(mat2) <- paste@('gene', 1:nrow(mat2))
colnames(mat2) <- paste@('sample', (ncol(matl1)+1):(ncol(matl)+ncol(mat2)))

mat <- cbind(matl, mat2)

metadata <- data.frame(row.names = colnames(mat))
metadata$Group <- rep(NA, ncol(mat))
metadata$Group[seq(1,40,2)] <- 'A’
metadata$Group[seq(2,40,2)] <- 'B'

metadata$CRP <- sample.int (100, size=ncol(mat), replace=TRUE)
metadata$ESR <- sample.int(100, size=ncol(mat), replace=TRUE)

p <- pca(mat, metadata = metadata, removeVar = 0.1)

eigencorplot(p, components = getComponents(p, 1:10),
metavars = c('ESR', 'CRP'))

findElbowPoint Find the elbow point in the curve of variance explained by each suc-
cessive PC. This can be used to determine the number of PCs to retain.

Description

Find the elbow point in the curve of variance explained by each successive PC. This can be used to
determine the number of PCs to retain.

Usage

findElbowPoint(variance)

Arguments
variance Numeric vector containing the variance explained by each PC. Should be mono-
tonic decreasing.
Details

Find the elbow point in the curve of variance explained by each successive PC. This can be used to
determine the number of PCs to retain.

Value

An integer scalar specifying the number of PCs at the elbow point.

16 getComponents

Author(s)

Aaron Lun

Examples

col <- 20
row <- 1000
mat <- matrix(rexp(colxrow, rate = 1), ncol = col)

Adding some structure to make it more interesting.
mat[1:100,1:3] <- mat[1:100,1:3] + 5
mat[1:100+100,3:6] <- mat[1:100+100,3:6] + 5
mat[1:100+200,7:10] <- mat[1:100+200,7:10] + 5
mat[1:100+300,11:15] <- mat[1:100+300,11:15] + 5

p <- pca(mat)
chosen <- findElbowPoint(p$variance)

plot(p$variance)
abline(v=chosen, col="red")

getComponents Return the principal component labels for an object of class 'pca’.

Description

Return the principal component labels for an object of class "pca’.

Usage

getComponents(pcaobj, components = NULL)

Arguments
pcaobj Object of class "pca’ created by pca().
components Indices of the principal components whose names will be returned. If NULL,
all PC names will be returned.
Details

Return the principal component labels for an object of class *pca’.

Value

A character object.

getLoadings

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Examples

options(scipen=10)
options(digits=6)

col <- 20
row <- 20000
matl <- matrix(
rexp(colxrow, rate = 0.1),
ncol = col)
rownames(matl) <- paste@('gene', 1:nrow(matl))
colnames(matl) <- paste@('sample', 1:ncol(mat1))

mat2 <- matrix(
rexp(colxrow, rate = 0.1),
ncol = col)
rownames(mat2) <- paste@('gene', 1:nrow(mat2))
colnames(mat2) <- paste@('sample', (ncol(matl1)+1):(ncol(matl)+ncol(mat2)))

mat <- cbind(matl, mat2)

metadata <- data.frame(row.names = colnames(mat))
metadata$Group <- rep(NA, ncol(mat))
metadata$Group[seq(1,40,2)] <- 'A’
metadata$Group[seq(2,40,2)] <- 'B'

metadata$CRP <- sample.int (100, size=ncol(mat), replace=TRUE)
metadata$ESR <- sample.int (100, size=ncol(mat), replace=TRUE)

p <- pca(mat, metadata = metadata, removeVar = 0.1)

getComponents(p)
getLoadings Return component loadings for principal components from an object
of class 'pca’.
Description

Return component loadings for principal components from an object of class "pca’.

Usage

getLoadings(pcaobj, components = NULL)

18 getLoadings

Arguments
pcaobj Object of class "pca’ created by pca().
components Indices of the principal components whose component loadings will be returned.
If NULL, all PC names will be returned.
Details

Return component loadings for principal components from an object of class ’pca’.

Value

A data. frame object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Examples

options(scipen=10)
options(digits=6)

col <- 20
row <- 20000
matl <- matrix(
rexp(colxrow, rate = 0.1),
ncol = col)
rownames(matl) <- paste@('gene', 1:nrow(matl))
colnames(matl) <- paste@('sample', 1:ncol(mat1))

mat2 <- matrix(
rexp(colxrow, rate = 0.1),
ncol = col)
rownames(mat2) <- paste@('gene', 1:nrow(mat2))
colnames(mat2) <- paste@('sample', (ncol(matl)+1):(ncol(matl)+ncol(mat2)))

mat <- cbind(matl, mat2)

metadata <- data.frame(row.names = colnames(mat))
metadata$Group <- rep(NA, ncol(mat))
metadata$Group[seq(1,40,2)] <- 'A’
metadata$Group[seq(2,40,2)] <- 'B'

metadata$CRP <- sample.int(100, size=ncol(mat), replace=TRUE)
metadata$ESR <- sample.int(100, size=ncol(mat), replace=TRUE)

p <- pca(mat, metadata = metadata, removeVar = 0.1)

getlLoadings(p)

getVars 19

getVars Return the explained variation for each principal component for an
object of class 'pca’.

Description

Return the explained variation for each principal component for an object of class *pca’.

Usage

getVars(pcaobj, components = NULL)

Arguments
pcaobj Object of class ’pca’ created by pca().
components Indices of the principal components whose explained variances will be returned.
If NULL, all values will be returned.
Details

Return the explained variation for each principal component for an object of class "pca’.

Value

A numeric object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Examples

options(scipen=10)
options(digits=6)

col <- 20
row <- 20000
matl <- matrix(
rexp(colxrow, rate = 0.1),
ncol = col)
rownames(matl) <- paste@('gene', 1:nrow(matl))
colnames(matl) <- paste@('sample', 1:ncol(mat1))

mat2 <- matrix(
rexp(colxrow, rate = 0.1),
ncol = col)
rownames(mat2) <- paste@('gene', 1:nrow(mat2))
colnames(mat2) <- paste@('sample', (ncol(matl1)+1):(ncol(matl)+ncol(mat2)))

20 pairsplot

mat <- cbind(matl, mat2)

metadata <- data.frame(row.names = colnames(mat))
metadata$Group <- rep(NA, ncol(mat))
metadata$Group[seq(1,40,2)] <- 'A’
metadata$Group[seq(2,40,2)] <- 'B'

metadata$CRP <- sample.int (100, size=ncol(mat), replace=TRUE)
metadata$ESR <- sample.int(100, size=ncol(mat), replace=TRUE)

p <- pca(mat, metadata = metadata, removeVar = 0.1)

getVars(p)

pairsplot Draw multiple bi-plots.

Description

Draw multiple bi-plots.

Usage

pairsplot(
pcaobj,
components = getComponents(pcaobj, seq_len(5)),
triangle = TRUE,
trianglelabSize = 18,
plotaxes = TRUE,
margingaps = unit(c(@0.1, 0.1, @.1, @0.1), "cm"),
ncol = NULL,
nrow = NULL,
x = NULL,
y = NULL,
colby = NULL,
colkey = NULL,
singlecol = NULL,
shape = NULL,
shapekey = NULL,
pointSize = 1,
legendPosition = "none”,
legendLabSize = 6,
legendIconSize = 1.5,

xlim = NULL,
ylim = NULL,
lab = NULL,

labSize = 1.5,
selectlLab = NULL,

pairsplot

drawConnectors = FALSE,
widthConnectors = 0.5,
colConnectors = "grey50",
xlab = NULL,

21

xlabAngle
xlabhjust
xlabvjust

I
[SN CRN]
[S2BN&)]

ylab = NULL

ylabAngle
ylabhjust
ylabvjust

N o o

axisLabSize
title = NULL,

titleLabSize

5,
.5,
10,

= 32,

hline = NULL,

hlineType

"longdash”,

hlineCol = "black”,
hlineWidth = 0.4,

vline = NULL,

vlineType = "longdash”,
vlineCol = "black”,
vlineWidth = 0.4,
gridlines.major = TRUE,
gridlines.minor = TRUE,
borderWidth = 0.8,
borderColour = "black”,
returnPlot = TRUE

)
Arguments

pcaobj Object of class "pca’ created by pca().

components The principal components to be included in the plot. These will be compared in
a pairwise fashion via multiple calls to biplot().

triangle Logical, indicating whether or not to draw the plots in the upper panel in a
triangular arrangement? Principal component names will be labeled along the
diagonal.

trianglelabSize
Size of p rincipal component label (when triangle = TRUE).

plotaxes Logical, indicating whether or not to draw the axis tick, labels, and titles.

margingaps The margins between plots in the plot space. Takes the form of a ’unit()’ vari-
able.

ncol If triangle = FALSE, the number of columns in the final merged plot.

nrow If triangle = FALSE, the number of rows in the final merged plot.

X A principal component to plot on x-axis. All principal component names are

stored in pcaobj$label.

22

pairsplot

y A principal component to plot on y-axis. All principal component names are
stored in pcaobj$label.

colby If NULL, all points will be coloured differently. If not NULL, value is assumed
to be a column name in pcaobj$metadata relating to some grouping/categorical
variable.

colkey Vector of name-value pairs relating to value passed to col’, e.g., c(A="forestgreen’,
B="gold’).

singlecol If specified, all points will be shaded by this colour. Overrides ’col’.

shape If NULL, all points will be have the same shape. If not NULL, value is assumed
to be a column name in pcaobj$metadata relating to some grouping/categorical
variable.

shapekey Vector of name-value pairs relating to value passed to ’shape’, e.g., c(A=10,
B=21).

pointSize Size of plotted points.

legendPosition Position of legend (top’, ’bottom’, ’left’, 'right’, *none’).
legendLabSize Size of plot legend text.

legendIconSize Size of plot legend icons / symbols.

x1lim Limits of the x-axis.

ylim Limits of the y-axis.

lab A vector containing labels to add to the plot.
labSize Size of labels.

selectLab A vector containing a subset of lab to plot.

drawConnectors Logical, indicating whether or not to connect plot labels to their corresponding
points by line connectors.

widthConnectors
Line width of connectors.

colConnectors Line colour of connectors.

xlab Label for x-axis.

xlabAngle Rotation angle of x-axis labels.
xlabhjust Horizontal adjustment of x-axis labels.
xlabvjust Vertical adjustment of x-axis labels.
ylab Label for y-axis.

ylabAngle Rotation angle of y-axis labels.
ylabhjust Horizontal adjustment of y-axis labels.
ylabvjust Vertical adjustment of y-axis labels.
axisLabSize Size of x- and y-axis labels.

title Plot title.

titleLabSize Size of plot title.

hline Draw one or more horizontal lines passing through this/these values on y-axis.
For single values, only a single numerical value is necessary. For multiple lines,
pass these as a vector, e.g., ¢(60,90).

pairsplot

hlineType

hlineCol
hlineWidth

vline

vlineType

vlineCol

vlineWidth
gridlines.major

gridlines.minor

borderWidth
borderColour

returnPlot

Details

23

Line type for hline ("blank’, ’solid’, ’dashed’, ’dotted’, ’dotdash’, ’longdash’,
twodash’).

Colour of hline.
Width of hline.

Draw one or more vertical lines passing through this/these values on x-axis. For
single values, only a single numerical value is necessary. For multiple lines,
pass these as a vector, e.g., ¢(60,90).

Line type for vline (’blank’, ’solid’, ’dashed’, ’dotted’, ’dotdash’, ’longdash’,
’twodash’).

Colour of vline.
Width of vline.

Logical, indicating whether or not to draw major gridlines.

Logical, indicating whether or not to draw minor gridlines.
Width of the border on the x and y axes.
Colour of the border on the x and y axes.

Logical, indicating whether or not to return the plot object.

Draw multiple bi-plots.

Value

A cowplot object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Examples

options(scipen=
options(digits=

col <- 20

row <- 20000

matl <- matrix(
rexp(colxrow,
ncol = col)

10)
6)

rate = 0.1),

rownames(matl) <- paste@('gene', 1:nrow(matl))
colnames(mat1) <- paste@('sample', 1:ncol(matl))

mat2 <- matrix(
rexp(col*xrow,
ncol = col)

rate = 0.1),

rownames(mat2) <- paste@('gene', 1:nrow(mat2))

24 paralle]lPCA
colnames(mat2) <- paste@('sample', (ncol(mat1)+1):(ncol(matl)+ncol(mat2)))
mat <- cbind(matl, mat2)
metadata <- data.frame(row.names = colnames(mat))
metadata$Group <- rep(NA, ncol(mat))
metadata$Group[seq(1,40,2)] <- 'A’
metadata$Group[seq(2,40,2)] <- 'B'
metadata$CRP <- sample.int(100, size=ncol(mat), replace=TRUE)
metadata$ESR <- sample.int (100, size=ncol(mat), replace=TRUE)
p <- pca(mat, metadata = metadata, removeVar = 0.1)
pairsplot(p, triangle = TRUE)

parallelPCA Perform Horn’s parallel analysis to choose the number of principal

components to retain.

Description

Perform Horn’s parallel analysis to choose the number of principal components to retain.

Usage

parallelPCA(
mat,
max.rank = 100,
niters = 50,
threshold = 0.1,
transposed = FALSE,
BSPARAM = ExactParam(),
BPPARAM = SerialParam()

)
Arguments

mat A numeric matrix where rows correspond to variables and columns correspond
to samples.

max . rank Integer scalar specifying the maximum number of PCs to retain.
Further arguments to pass to pca.

niters Integer scalar specifying the number of iterations to use for the parallel analysis.

threshold Numeric scalar representing the “p-value” threshold above which PCs are to be

ignored.

parallelPCA 25

transposed Logical scalar indicating whether mat is transposed, i.e., rows are samples and
columns are variables.
BSPARAM A BiocSingularParam object specifying the algorithm to use for PCA.
BPPARAM A BiocParallelParam object specifying how the iterations should be paralellized.
Details

Horn’s parallel analysis involves shuffling observations within each row of x to create a permuted
matrix. PCA is performed on the permuted matrix to obtain the percentage of variance explained
under a random null hypothesis. This is repeated over several iterations to obtain a distribution of
curves on the scree plot.

For each PC, the “p-value” (for want of a better word) is defined as the proportion of iterations
where the variance explained at that PC is greater than that observed with the original matrix. The
number of PCs to retain is defined as the last PC where the p-value is below threshold. This aims
to retain all PCs that explain “significantly” more variance than expected by chance.

This function can be sped up by specifying BSPARAM=IrlbaParam() or similar, to use approximate
strategies for performing the PCA. Another option is to set BPPARAM to perform the iterations in
parallel.

Value

A list is returned, containing:

* original, the output from running pca on mat with the specified arguments.

* permuted, a matrix of variance explained from randomly permuted matrices. Each column
corresponds to a single permutated matrix, while each row corresponds to successive principal
components.

* n, the estimated number of principal components to retain.

Author(s)

Aaron Lun

Examples

Mocking up some data.

ngenes <- 1000

means <- 2*runif(ngenes, 6, 10)

dispersions <- 10/means + 0.2

nsamples <- 50

counts <- matrix(rnbinom(ngenes*nsamples, mu=means,
size=1/dispersions), ncol=nsamples)

Choosing the number of PCs
lcounts <- log2(counts + 1)
output <- parallelPCA(lcounts)
output$n

26

pca

pca

PCAtools

Description

PCAtools

Usage

pca(
mat,

metadata = NULL,
center = TRUE,

scale =
rank = NULL,
removeVar

FALSE,

NULL,

transposed = FALSE,
BSPARAM = ExactParam()

Arguments

mat

metadata

center
scale

rank

removeVar

transposed

BSPARAM

Details

A data-matrix or data-frame containing numerical data only. Variables are ex-
pected to be in the rows and samples in the columns by default.

A data-matrix or data-frame containing metadata. This will be stored in the re-
sulting pca object. Strictly enforced that rownames(metadata) == colnames(mat).

Center the data before performing PCA? Same as prcomp() ’center’ parameter.
Scale the data? Same as prcomp() ’scale’ parameter.

An integer scalar specifying the number of PCs to retain. OPTIONAL for an
exact SVD, whereby it defaults to all PCs. Otherwise REQUIRED for approxi-
mate SVD methods.

Remove this % of variables based on low variance.

Is mat transposed? DEFAULT = FALSE. If set to TRUE, samples are in the
rows and variables are in the columns.

A BiocSingularParam object specifying the algorithm to use for the SVD. De-
faults to an exact SVD.

Principal Component Analysis (PCA) is a very powerful technique that has wide applicability in
data science, bioinformatics, and further afield. It was initially developed to analyse large volumes
of data in order to tease out the differences/relationships between the logical entities being analysed.
It extracts the fundamental structure of the data without the need to build any model to represent it.
This ’summary’ of the data is arrived at through a process of reduction that can transform the large
number of variables into a lesser number that are uncorrelated (i.e. the ‘principal components’),

pca 27

whilst at the same time being capable of easy interpretation on the original data. PCAtools provides
functions for data exploration via PCA, and allows the user to generate publication-ready figures.
PCA is performed via BiocSingular - users can also identify optimal number of principal component
via different metrics, such as elbow method and Horn’s parallel analysis, which has relevance for
data reduction in single-cell RNA-seq (scRNA-seq) and high dimensional mass cytometry data.

Value
A pca object, containing:

e rotated, a data frame of the rotated data, i.e., the centred and scaled (if either or both are
requested) input data multiplied by the variable loadings (’loadings’). This is the same as the
’x’ variable returned by prcomp().

* loadings, a data frame of variable loadings (‘rotation’ variable returned by prcomp()).
* variance, a numeric vector of the explained variation for each principal component.

* sdev, the standard deviations of the principal components.

* metadata, the original metadata

* xvars, a character vector of rownames from the input data.

* yvars, a character vector of colnames from the input data.

* components, a character vector of principal component / eigenvector names.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Examples

options(scipen=10)
options(digits=6)

col <- 20
row <- 20000
mat1l <- matrix(
rexp(colxrow, rate = 0.1),
ncol = col)
rownames(matl) <- paste@('gene', 1:nrow(matl))
colnames(matl) <- paste@('sample', 1:ncol(mat1))

mat2 <- matrix(
rexp(colxrow, rate = 0.1),
ncol = col)
rownames(mat2) <- paste@('gene', 1:nrow(mat2))
colnames(mat2) <- paste@('sample', (ncol(matl)+1):(ncol(matl)+ncol(mat2)))

mat <- cbind(matl, mat2)
metadata <- data.frame(row.names = colnames(mat))

metadata$Group <- rep(NA, ncol(mat))
metadata$Group[seq(1,40,2)] <- 'A’

28 plotloadings

metadata$Group[seq(2,40,2)] <- 'B'

metadata$CRP <- sample.int(100, size=ncol(mat), replace=TRUE)
metadata$ESR <- sample.int(100, size=ncol(mat), replace=TRUE)
p <- pca(mat, metadata = metadata, removeVar = 0.1)
getComponents(p)

getVars(p)

getLoadings(p)

screeplot(p)

screeplot(p, hline = 80)

biplot(p)

biplot(p, colby = 'Group', shape = 'Group')

biplot(p, colby = 'Group', colkey = c(A = 'forestgreen', B = 'gold'),
legendPosition = 'right"')

biplot(p, colby = 'Group', colkey = c(A='forestgreen', B='gold'),
shape = 'Group', shapekey = c(A=10, B=21), legendPosition = 'bottom')

pairsplot(p, triangle = TRUE)
plotloadings(p, drawConnectors=TRUE)

eigencorplot(p, components = getComponents(p, 1:10),
metavars = c('ESR', 'CRP'))

plotloadings Plot the component loadings for selected principal components /
eigenvectors and label variables driving variation along these.

Description

Plot the component loadings for selected principal components / eigenvectors and label variables
driving variation along these.

Usage

plotloadings(
pcaobj,
components = getComponents(pcaobj, seq_len(5)),
rangeRetain = 0.05,
absolute = FALSE,

plotloadings

col = c("gold”, "white", "royalblue"),
colMidpoint = 0,

shape = 21,
shapeSizeRange = c(10, 10),
legendPosition = "top",

legendLabSize = 10,

legendIconSize = 3,

xlim = NULL,

ylim = NULL,

labSize = 2,

labhjust = 1.5,

labvjust = 0,

drawConnectors = TRUE,
positionConnectors = "right",
widthConnectors = 0.5,

typeConnectors = "closed”,
endsConnectors = "first",
lengthConnectors = unit(@0.01, "npc"),
colConnectors = "grey50",

xlab = "Principal component”,
xlabAngle = 0,

xlabhjust = 0.5,

xlabvjust = 0.5,

ylab = "Component loading”,

ylabAngle = 0,

ylabhjust = @
ylabvjust = 0.
axisLabSize =
title = "",

subtitle = "",

caption = ""
titleLabSize = 16,
subtitlelLabSize = 12,
captionLabSize = 12,
hline = c(0),

hlineType = "longdash",
hlineCol = "black”,
hlineWidth = 0.4,

vline = NULL,

vlineType = "longdash”,
vlineCol = "black”,
vlineWidth = 0.4,
gridlines.major = TRUE,
gridlines.minor = TRUE,
borderWidth = 0.8,
borderColour = "black”,
returnPlot = TRUE

29

30 plotloadings

Arguments

pcaobj Object of class ’pca’ created by pca().

components The principal components to be included in the plot.

rangeRetain Cut-off value for retaining variables. The function will look across each speci-
fied principal component and retain the variables that fall within this top/bottom
fraction of the loadings range.

absolute Logical, indicating whether or not to plot absolute loadings.

col Colours used for generation of fill gradient according to loadings values. Can

be 2 or 3 colours.
colMidpoint Mid-point (loading) for the colour range.
shape Shape of the plotted points.
shapeSizeRange Size range for the plotted points (min, max).
legendPosition Position of legend ('top’, *bottom’, ’left’, ‘right’, 'none’).
legendLabSize Size of plot legend text.

legendIconSize Size of plot legend icons / symbols.

x1im Limits of the x-axis.

ylim Limits of the y-axis.

labSize Size of labels.

labhjust Horizontal adjustment of label.
labvjust Vertical adjustment of label.

drawConnectors Logical, indicating whether or not to connect plot labels to their corresponding
points by line connectors.

positionConnectors
Position of the connectors and their labels with respect to the plotted points
(left’, 'right’).

widthConnectors
Line width of connectors.

typeConnectors Have the arrow head open or filled ("closed’)? (Copen’, "closed’).

endsConnectors Which end of connectors to draw arrow head? (’last’, ’first’, *both’).
lengthConnectors
Length of the connectors.

colConnectors Line colour of connectors.

xlab Label for x-axis.

xlabAngle Rotation angle of x-axis labels.
xlabhjust Horizontal adjustment of x-axis labels.
xlabvjust Vertical adjustment of x-axis labels.
ylab Label for y-axis.

ylabAngle Rotation angle of y-axis labels.

ylabhjust Horizontal adjustment of y-axis labels.

plotloadings 31

ylabvjust Vertical adjustment of y-axis labels.
axisLabSize Size of x- and y-axis labels.

title Plot title.

subtitle Plot subtitle.

caption Plot caption.

titleLabSize Size of plot title.
subtitlelLabSize

Size of plot subtitle.
captionLabSize Size of plot caption.

hline Draw one or more horizontal lines passing through this/these values on y-axis.
For single values, only a single numerical value is necessary. For multiple lines,
pass these as a vector, e.g., ¢(60,90).

hlineType Line type for hline (’blank’, ’solid’, ’dashed’, ’dotted’, *dotdash’, ’longdash’,
twodash’).

hlineCol Colour of hline.

hlineWidth Width of hline.

vline Draw one or more vertical lines passing through this/these values on x-axis. For

single values, only a single numerical value is necessary. For multiple lines,
pass these as a vector, e.g., ¢(60,90).

vlineType Line type for vline (’blank’, ’solid’, ’dashed’, ’dotted’, *dotdash’, ’longdash’,
’twodash’).

vlineCol Colour of vline.

vlineWidth Width of vline.

gridlines.major

Logical, indicating whether or not to draw major gridlines.
gridlines.minor

Logical, indicating whether or not to draw minor gridlines.

borderWidth Width of the border on the x and y axes.
borderColour Colour of the border on the x and y axes.

returnPlot Logical, indicating whether or not to return the plot object.

Details

Plot the component loadings for selected principal components / eigenvectors and label variables
driving variation along these.

Value

A ggplot2 object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

32

Examples

options(scipen=10)
options(digits=6)

col <- 20
row <- 20000
matl <- matrix(
rexp(colxrow, rate = 0.1),
ncol = col)
rownames(matl) <- paste@('gene', 1:nrow(matl))
colnames(matl) <- paste@('sample', 1:ncol(mat1))

mat2 <- matrix(
rexp(colxrow, rate = 0.1),
ncol = col)
rownames(mat2) <- paste@('gene', 1:nrow(mat2))

colnames(mat2) <- paste@('sample', (ncol(matl1)+1):(ncol(matl)+ncol(mat2)))

mat <- cbind(matl, mat2)

metadata <- data.frame(row.names = colnames(mat))
metadata$Group <- rep(NA, ncol(mat))
metadata$Group[seq(1,40,2)] <- 'A’
metadata$Group[seq(2,40,2)] <- 'B'

metadata$CRP <- sample.int (100, size=ncol(mat), replace=TRUE)
metadata$ESR <- sample.int(100, size=ncol(mat), replace=TRUE)

p <- pca(mat, metadata = metadata, removeVar = 0.1)

plotloadings(p, drawConnectors = TRUE)

screeplot

screeplot

Draw a SCREE plot, showing the distribution of explained variance
across all or select principal components / eigenvectors.

Description

Draw a SCREE plot, showing the distribution of explained variance across all or select principal
components / eigenvectors.

Usage
screeplot(
pcaobj,
components = getComponents(pcaobj),
xlim = NULL,
ylim = c(0, 100),

xlab = "Principal component”,

screeplot

xlabAngle = 90,

xlabhjust = 0.5,

xlabvjust = 0.5,

ylab = "Explained variation (%)",
ylabAngle
ylabhjust .5,
ylabvjust = 0.5,
axislLabSize = 16,

title = "SCREE plot”,

subtitle = "",

caption = "",

titleLabSize = 16,
subtitlelLabSize = 12,
captionLabSize = 12,

colBar = "dodgerblue”,
drawCumulativeSumLine = TRUE,
colCumulativeSumLine = "red2"”,
sizeCumulativeSumLine = 1.5,
drawCumulativeSumPoints = TRUE,

1l
|l oo

’

colCumulativeSumPoints = "red2"”,
sizeCumulativeSumPoints = 2,
hline = NULL,

hlineType = "longdash”,
hlineCol = "black”,
hlineWidth = 0.4,

vline = NULL,

vlineType = "longdash",
vlineCol = "black”,
vlineWidth = 0.4,
gridlines.major = TRUE,
gridlines.minor = TRUE,
borderWidth = 0.8,

borderColour = "black”,
returnPlot = TRUE
)
Arguments
pcaobj Object of class *pca’ created by pca().
components The principal components to be included in the plot
x1im Limits of the x-axis.
ylim Limits of the y-axis.
x1lab Label for x-axis.
xlabAngle Rotation angle of x-axis labels.
xlabhjust Horizontal adjustment of x-axis labels.

xlabvjust Vertical adjustment of x-axis labels.

34

screeplot
ylab Label for y-axis.
ylabAngle Rotation angle of y-axis labels.
ylabhjust Horizontal adjustment of y-axis labels.
ylabvjust Vertical adjustment of y-axis labels.
axisLabSize Size of x- and y-axis labels.
title Plot title.
subtitle Plot subtitle.
caption Plot caption.

titleLabSize Size of plot title.
subtitlelabSize
Size of plot subtitle.

captionLabSize Size of plot caption.

colBar Colour of the vertical bars.
drawCumulativeSumLine
Logical, indicating whether or not to overlay plot with a cumulative explained
variance line.
colCumulativeSumLine
Colour of cumulative explained variance line.
sizeCumulativeSumlLine
Size of cumulative explained variance line.
drawCumulativeSumPoints
Logical, indicating whether or not to draw the cumulative explained variance
points.
colCumulativeSumPoints
Colour of cumulative explained variance points.
sizeCumulativeSumPoints
Size of cumulative explained variance points.
hline Draw one or more horizontal lines passing through this/these values on y-axis.

For single values, only a single numerical value is necessary. For multiple lines,
pass these as a vector, e.g., ¢(60,90).

hlineType Line type for hline (’blank’, ’solid’, ’dashed’, ’dotted’, *dotdash’, ’longdash’,
twodash’).

hlineCol Colour of hline.

hlineWidth Width of hline.

vline Draw one or more vertical lines passing through this/these values on x-axis. For

single values, only a single numerical value is necessary. For multiple lines,
pass these as a vector, e.g., ¢(60,90).

vlineType Line type for vline (’blank’, ’solid’, ’dashed’, ’dotted’, ’dotdash’, ’longdash’,
’twodash’).
vlineCol Colour of vline.

vlineWidth Width of vline.

screeplot 35

gridlines.major

Logical, indicating whether or not to draw major gridlines.
gridlines.minor

Logical, indicating whether or not to draw minor gridlines.

borderWidth Width of the border on the x and y axes.
borderColour Colour of the border on the x and y axes.

returnPlot Logical, indicating whether or not to return the plot object.

Details

Draw a SCREE plot, showing the distribution of explained variance across all or select principal
components / eigenvectors.

Value

A ggplot?2 object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Examples

options(scipen=10)
options(digits=6)

col <- 20
row <- 20000
matl <- matrix(
rexp(colxrow, rate = 0.1),
ncol = col)
rownames(matl) <- paste@('gene', 1:nrow(matl))
colnames(matl) <- paste@('sample', 1:ncol(mat1))

mat2 <- matrix(
rexp(colxrow, rate = 0.1),
ncol = col)
rownames(mat2) <- paste@('gene', 1:nrow(mat2))
colnames(mat2) <- paste@('sample', (ncol(matl1)+1):(ncol(matl)+ncol(mat2)))

mat <- cbind(matl, mat2)

metadata <- data.frame(row.names = colnames(mat))
metadata$Group <- rep(NA, ncol(mat))
metadata$Group[seq(1,40,2)] <- 'A’
metadata$Group[seq(2,40,2)] <- 'B'

metadata$CRP <- sample.int (100, size=ncol(mat), replace=TRUE)
metadata$ESR <- sample.int (100, size=ncol(mat), replace=TRUE)

p <- pca(mat, metadata = metadata, removeVar = 0.1)

screeplot

screeplot(p)

screeplot(p, hline = 80)

Index

BiocParallelParam, 25
BiocSingularParam, 25, 26
biplot, 2

character, 16
chooseGavishDonoho, 9, 11
chooseMarchenkoPastur, /10, 10
cowplot, 23

data.frame, /18
eigencorplot, 12
findElbowPoint, 10, 11, 15

getComponents, 16
getLoadings, 17
getVars, 19
ggplot2, 8, 31, 35

lattice, /14
numeric, 19
pairsplot, 20
parallelPCA, 10, 11,24
pca, 24, 25, 26, 27
plotloadings, 28

screeplot, 32

37

	biplot
	chooseGavishDonoho
	chooseMarchenkoPastur
	eigencorplot
	findElbowPoint
	getComponents
	getLoadings
	getVars
	pairsplot
	parallelPCA
	pca
	plotloadings
	screeplot
	Index

