1 Introduction

This package provides a R / Bioconductor resource to re-create plots and extend the analyses of Korthauer and Kimes et al. (2019). In this paper, methods controlling the False Discovery Rate (FDR) were applied to a collection of simulated and biological data sets to generate the benchmarking summaries provided with this package. Here, we give an example of how to load summary objects, plot results, and apply a new method to the dataset.

The package can be installed from R (version >= 3.6) using the BiocManager package, available on CRAN.

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("benchmarkfdrData2019")

2 Load Packages

suppressPackageStartupMessages({
    library(ExperimentHub)
    library(benchmarkfdrData2019)
    library(SummarizedBenchmark)
    library(dplyr)
    library(ggplot2)
    library(rlang)
})

In addition to the ExperimentHub and benchmarkfdrData2019 packages, we also load the SummarizedBenchmark package. Benchmarking results made available with this package for all case studies and simulations described in Korthauer and Kimes et al. (2019) were created using the SummarizedBenchmark package and are stored as SummarizedBenchmark objects.

However, note that the objects were generated using the fdrbenchmark branch of the corresponding SummarizedBenchmark GitHub repository, and do not include all of the features described in newer versions of the package (e.g. available on Bioconductor).

In this vignette, we use the release version of the SummarizedBenchmark package available on Bioconductor. However, the fdrbenchmark version of the SummarizedBenchmark package can be installed from GitHub, again, using the BiocManager package.

BiocManager::install("areyesq89/SummarizedBenchmark", ref = "fdrbenchmark")

3 Load Data

The data are available for downloaded from the Bioconductor ExperimentHub web resource. The complete list of resources availble with the benchmarkfdrData2019 package can be queried using the following command.

hub <- ExperimentHub()
bfdrData <- query(hub, "benchmarkfdrData2019")
bfdrData
## ExperimentHub with 171 records
## # snapshotDate(): 2022-04-19
## # $dataprovider: NA, Geoffrey J. Barton lab, University of Dundee, Dundee, U...
## # $species: Saccharomyces cerevisiae, Homo sapiens, human gut metagenome, Mu...
## # $rdataclass: SummarizedBenchmark
## # additional mcols(): taxonomyid, genome, description,
## #   coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
## #   rdatapath, sourceurl, sourcetype 
## # retrieve records with, e.g., 'object[["EH2267"]]' 
## 
##            title                          
##   EH2267 | h3k4me3-promoters-benchmark    
##   EH2268 | h3k4me3-csaw-benchmark         
##   EH2269 | h3k4me3-csaw-uninf-benchmark   
##   EH2270 | h3k4me3-csaw-cov-benchmark     
##   EH2271 | cbp-csaw-benchmark             
##   ...      ...                            
##   EH2433 | varyingpi0-benchmark-nullprop70
##   EH2434 | varyingpi0-benchmark-nullprop80
##   EH2435 | varyingpi0-benchmark-nullprop90
##   EH2436 | varyingpi0-benchmark-nullprop95
##   EH2437 | varyingpi0-benchmark-nullprop99

The above command only returns the metadata associated with each data object available on ExperimentHub. Individual resources must be retrieved from ExperimentHub before they can be loaded in R. Here, we retrieve and load two resource objects to illustrate the analyses that can be performed using the data available with this package.

First, we load the benchmark results for a ChIP-seq case study where differential binding was tested using the csaw package with region width used as the independent covariate. The resource is stored with the title "cbp-csaw-benchmark". First, we determine the corresponding ExperimentHub ID for the resource.

cbp_id <- bfdrData$ah_id[bfdrData$title == "cbp-csaw-benchmark"]
cbp_id
## [1] "EH2271"

Using the ID, we can now access the metadata associated with the resource by subsetting bfdrData using single brackets ([). Using double brackets ([[) will retrieve the resource from the ExperimentHub server.

bfdrData[cbp_id]
## ExperimentHub with 1 record
## # snapshotDate(): 2022-04-19
## # names(): EH2271
## # package(): benchmarkfdrData2019
## # $dataprovider: Biochemistry, St Jude Children's Research Hospital
## # $species: Mus musculus
## # $rdataclass: SummarizedBenchmark
## # $rdatadateadded: 2019-04-23
## # $title: cbp-csaw-benchmark
## # $description: Differential peak calling in CREB-binding protein (CBP) knoc...
## # $taxonomyid: 10090
## # $genome: mm10
## # $sourcetype: FASTQ
## # $sourceurl: https://www.ebi.ac.uk/ena/data/view/PRJNA236594
## # $sourcesize: NA
## # $tags: c("SingleCellData", "ExperimentData", "RNASeqData",
## #   "ExpressionData", "ExperimentHub") 
## # retrieve record with 'object[["EH2271"]]'
chipres <- bfdrData[[cbp_id]]
chipres
## class: SummarizedBenchmark 
## dim: 59596 21 
## metadata(0):
## assays(1): bench
## rownames: NULL
## rowData names(2): bench ind_covariate
## colnames(21): unadjusted bonf ... lfdr adapt-glm
## colData names(24): bfunc bpost ... param.alphas blabel

Next, we load the benchmark results from a yeast in silico RNA-seq experiment where differential expression was tested using DESeq2 with a strong (simulated) independent and informative covariate. Unlike the ChIP-seq analysis above, with the in silico experiment, we know ground truth, and therefore can evaluate FDR control as well as the true positive rate (TPR) at nominal FDR significance thresholds.

Since the in silico experiments were repeated 100 times, the data object is a list of 100 SummarizedBenchmark objects for each replication. The resource is stored with the title "yeast-results-de5". Here, we demonstrate an alternative approach to retrieving the resource from the ExperimentHub server. Rather than subset bfdrData using double brackets ([[), we retrieve the resource by calling the resource name as a function (yeast-results-de5()). This functionality is available for all resources available with this package (including the ChIP-seq resource loaded above).

yeast_id <- bfdrData$ah_id[bfdrData$title == "yeast-results-de5"]
bfdrData[yeast_id]
## ExperimentHub with 1 record
## # snapshotDate(): 2022-04-19
## # names(): EH2320
## # package(): benchmarkfdrData2019
## # $dataprovider: Geoffrey J. Barton lab, University of Dundee, Dundee, UK
## # $species: Saccharomyces cerevisiae
## # $rdataclass: SummarizedBenchmark
## # $rdatadateadded: 2019-04-23
## # $title: yeast-results-de5
## # $description: Yeast RNA-seq 48 sample simulation study: Unimodal alternati...
## # $taxonomyid: 4932
## # $genome: Ensembl release 68
## # $sourcetype: tar.gz
## # $sourceurl: https://github.com/bartongroup/profDGE48
## # $sourcesize: NA
## # $tags: c("SingleCellData", "ExperimentData", "RNASeqData",
## #   "ExpressionData", "ExperimentHub") 
## # retrieve record with 'object[["EH2320"]]'
yeastres <- `yeast-results-de5`()
length(yeastres)
## [1] 100
yeastres[[1]]
## class: SummarizedBenchmark 
## dim: 6544 23 
## metadata(0):
## assays(1): qvalue
## rownames: NULL
## rowData names(3): qvalue ind_covariate log2FC
## colnames(23): unadjusted bonf ... fdrreg-t fdrreg-e
## colData names(28): bfunc bpost ... param.control blabel

To be able to work with the latest release of the SummarizedBenchmark package, we must fill in a missing slot of the SummarizedBenchmark objects.

chipres@BenchDesign <- BenchDesign()
yeastres <- lapply(yeastres, function(x) { x@BenchDesign <- BenchDesign(); x })

3.1 SummarizedBenchmark Objects

The SummarizedBenchmark objects include the original p-values, informative covariate, and corrected significance values for the various methods compared in Korthauer and Kimes et al. (2019).

SummarizedBenchmark objects are an extension of the Bioconductor SummarizedExperiment class, with results organized as a rectangular “assay”, with associated row and column metadata. Here, the rows of the objects correspond to individual hypothesis tests and the columns correspond to the approaches used for multiple testing correction.

We can take a look at the names of the methods included in the ChIP-seq results object.

colnames(chipres)
##  [1] "unadjusted" "bonf"       "bh"         "qvalue"     "ihw-a01"   
##  [6] "ihw-a02"    "ihw-a03"    "ihw-a04"    "ihw-a05"    "ihw-a06"   
## [11] "ihw-a07"    "ihw-a08"    "ihw-a09"    "ihw-a10"    "ashq"      
## [16] "bl-df02"    "bl-df03"    "bl-df04"    "bl-df05"    "lfdr"      
## [21] "adapt-glm"

Notice that the results include the IHW and BL methods multiple times. These ihw- and bl- columns correspond to separate runs of the methods with different parameter settings. Briefly, the IHW method requires specifying an alpha FDR threshold while running the method. Here, the method was run with alpha values of 0.01, 0.02, .., 0.10. The BL method was run with spline degrees of freedom 2, 3, 4, 5.

The corrected significance returned by each method is included in the single assay, "bench" (corresponding to the benchmarked results).

dim(assay(chipres, "bench"))
## [1] 59596    21
head(assay(chipres, "bench"))
##      unadjusted bonf        bh    qvalue   ihw-a01   ihw-a02   ihw-a03
## [1,] 0.09367441    1 0.2750488 0.1587219 0.4153819 1.0000000 1.0000000
## [2,] 0.07635065    1 0.2456775 0.1417726 0.2592850 0.2359257 0.2113001
## [3,] 0.44641540    1 0.6193447 0.3574041 0.6874034 0.6697854 0.4831826
## [4,] 0.54230545    1 0.6976696 0.4026029 0.7825177 1.0000000 1.0000000
## [5,] 0.11280772    1 0.2936016 0.1694281 0.3009025 0.3865540 0.2590641
## [6,] 0.31152661    1 0.5027725 0.2901340 0.5194227 0.4229486 0.3428025
##        ihw-a04   ihw-a05   ihw-a06   ihw-a07   ihw-a08   ihw-a09   ihw-a10 ashq
## [1,] 0.2383437 0.2010557 0.1859702 0.1894541 0.1837203 0.2021730 0.1998073   NA
## [2,] 0.2529069 0.1952980 0.2451944 0.1935890 0.1943609 0.1971796 0.1879095   NA
## [3,] 0.6147271 0.4718577 0.4405994 0.4508408 0.4687339 0.4390055 0.4804587   NA
## [4,] 0.8947457 0.9276785 1.0000000 0.9881300 0.6758374 0.8118452 0.7374463   NA
## [5,] 0.2836033 0.2245577 0.2129845 0.2218124 0.2323623 0.2743020 0.2317344   NA
## [6,] 0.3358033 0.2741951 0.3035988 0.3531403 0.3852453 0.3926378 0.4048568   NA
##         bl-df02   bl-df03   bl-df04   bl-df05       lfdr adapt-glm
## [1,] 0.09501728 0.1242898 0.1359421 0.1404518 0.05770709 0.1246816
## [2,] 0.09334559 0.1185802 0.1286718 0.1325802 0.05362979 0.1142933
## [3,] 0.17635627 0.2454214 0.2725921 0.2830917 0.24715606 0.2476961
## [4,] 0.35015194 0.4105930 0.4347989 0.4441300 0.38512849       Inf
## [5,] 0.11155442 0.1417115 0.1537717 0.1584425 0.06377030 0.1327596
## [6,] 0.10655455 0.1638255 0.1859225 0.1944646 0.12164067 0.1999106

The ASH (ashq) results are NA as the method was not applied to the data.

4 Exploratory Analysis

Given the multiple-testing-corrected results provided in the "bench" assay of the SummarizedBenchmark objects, we can take a look at several performance metrics to compare the various methods. For the ChIP-seq case study, we can take a look at the number of rejections at various significance cutoffs. With the in silico yeast experiments, since truth is known, we can also look at FDR and TPR, as well as other related metrics.

SummarizedBenchmark objects include functionality to easily add and evaluate metrics for data stored as assays. This is performed by first adding performance metrics with addPerformanceMetric, followed by a call to estimatePerformanceMetrics. While custom performance metrics can be defined by users, the package fortunately includes several default metrics that can be added by name.

availableMetrics()
##            functions                                   description
## 1         rejections                          Number of rejections
## 2                TPR                            True Positive Rate
## 3                TNR                            True Negative Rate
## 4                FDR              False Discovery Rate (estimated)
## 5                FNR                           False Negative Rate
## 6        correlation                           Pearson correlation
## 7               sdad Standard Deviation of the Absolute Difference
## 8            hamming                              Hamming distance
## 9             LPnorm                                    L_{p} norm
## 10 adjustedRandIndex                           Adjusted Rand Index
##    requiresTruth
## 1          FALSE
## 2           TRUE
## 3           TRUE
## 4           TRUE
## 5           TRUE
## 6           TRUE
## 7           TRUE
## 8           TRUE
## 9           TRUE
## 10          TRUE

4.1 ChIP-seq Case Study

We will add the "rejections" metric to the "bench" assay and compute the number of rejections for each method at cutoffs between 0.01 and 0.10.

chipres <- addPerformanceMetric(chipres,
                                evalMetric = "rejections",
                                assay = "bench")

Next, we compute the number of rejections and organize this as a tidy data.frame.

chipdf <- estimatePerformanceMetrics(chipres,
                                     alpha = seq(0.01, 0.10, by = .01),
                                     tidy = TRUE)

dim(chipdf)
## [1] 210  29
head(chipdf)
##                   bfunc                         bpost bfunc_anon vers_src
## 1 function(p) {;    p;}                          <NA>       TRUE    bfunc
## 2              p.adjust                          <NA>      FALSE    bfunc
## 3              p.adjust                          <NA>      FALSE    bfunc
## 4        qvalue::qvalue function(x) {;    x$qvalues;}      FALSE    bfunc
## 5              IHW::ihw              IHW::adj_pvalues      FALSE    bfunc
## 6              IHW::ihw              IHW::adj_pvalues      FALSE    bfunc
##   pkg_name pkg_vers param.p param.method param.pvalues param.covariates
## 1     <NA>     <NA>    pval         <NA>          <NA>             <NA>
## 2    stats    3.5.0    pval "bonferroni"          <NA>             <NA>
## 3    stats    3.5.0    pval         "BH"          <NA>             <NA>
## 4   qvalue   2.12.0    pval         <NA>          <NA>             <NA>
## 5      IHW    1.8.0    <NA>         <NA>          pval    ind_covariate
## 6      IHW    1.8.0    <NA>         <NA>          pval    ind_covariate
##   param.alpha param.betahat param.sebetahat param.pValues param.X
## 1        <NA>          <NA>            <NA>          <NA>    <NA>
## 2        <NA>          <NA>            <NA>          <NA>    <NA>
## 3        <NA>          <NA>            <NA>          <NA>    <NA>
## 4        <NA>          <NA>            <NA>          <NA>    <NA>
## 5        0.01          <NA>            <NA>          <NA>    <NA>
## 6        0.02          <NA>            <NA>          <NA>    <NA>
##   param.smooth.df param.unadj_p param.groups param.pvals param.x
## 1            <NA>          <NA>         <NA>        <NA>    <NA>
## 2            <NA>          <NA>         <NA>        <NA>    <NA>
## 3            <NA>          <NA>         <NA>        <NA>    <NA>
## 4            <NA>          <NA>         <NA>        <NA>    <NA>
## 5            <NA>          <NA>         <NA>        <NA>    <NA>
## 6            <NA>          <NA>         <NA>        <NA>    <NA>
##   param.pi_formulas param.mu_formulas param.alphas     blabel      label value
## 1              <NA>              <NA>         <NA> unadjusted unadjusted  5342
## 2              <NA>              <NA>         <NA>       bonf       bonf     0
## 3              <NA>              <NA>         <NA>         bh         bh     0
## 4              <NA>              <NA>         <NA>     qvalue     qvalue     4
## 5              <NA>              <NA>         <NA>    ihw-a01    ihw-a01     0
## 6              <NA>              <NA>         <NA>    ihw-a02    ihw-a02     0
##   assay performanceMetric alpha
## 1 bench        rejections  0.01
## 2 bench        rejections  0.01
## 3 bench        rejections  0.01
## 4 bench        rejections  0.01
## 5 bench        rejections  0.01
## 6 bench        rejections  0.01

Each row in the data.frame corresponds to a method + metric + cutoff combination (e.g. "unadjusted" + "rejections" + "alpha = 0.01"). This information is stored in the "label", "performanceMetric", and "alpha" columns, with the corresponding metric value in the "value" column. All other columns contain method metadata, such as the package version, when the method was evaluated.

We will now clean up the IHW and BL methods which, as described above, include multiple parameter settings.

## subset IHW
chipdf <- dplyr:::filter(chipdf, !(grepl("ihw", label) & param.alpha != alpha))
chipdf <- dplyr:::mutate(chipdf, label = gsub("(ihw)-a\\d+", "\\1", label))

## subset BL
chipdf <- dplyr:::filter(chipdf, ! label %in% paste0("bl-df0", c(2, 4, 5)))

We only keep a subset of the columns and drop NA values.

chipdf <- dplyr::select(chipdf, label, performanceMetric, alpha, value)
chipdf <- dplyr::filter(chipdf, !is.na(value))
head(chipdf)
##        label performanceMetric alpha value
## 1 unadjusted        rejections  0.01  5342
## 2       bonf        rejections  0.01     0
## 3         bh        rejections  0.01     0
## 4     qvalue        rejections  0.01     4
## 5        ihw        rejections  0.01     0
## 6    bl-df03        rejections  0.01    78

We now plot the number of rejections.

ggplot(chipdf, aes(x = alpha, y = value, color = label)) +
    geom_point() +
    geom_line() +
    scale_color_viridis_d("Method") +
    scale_x_continuous(breaks = seq(0, 1, .01), limits = c(0, .11)) +
    ylab("Rejections") +
    theme_bw() +
    ggtitle("Number of rejections across multiple-testing methods",
            "ChIP-seq CBP differential analysis with informative covariate")

4.2 Yeast in silico Data

We can similarly add performance metrics to each replication of the yeast in silico experiment and aggregate across replicates. We demonstrate this process using a subset of the 100 replications in the interest of computational cost.

yeastres10 <- yeastres[1:10]

As with the ChIP-seq results, we can add and evaluate performance metrics using addPerformanceMetric and estimatePerformanceMetrics. However, note that the yeast in silico results already include several default performance metrics.

names(performanceMetrics(yeastres10[[1]])[["qvalue"]])
## [1] "TPR"        "FDR"        "TNR"        "FNR"        "rejections"

We can skip the process of adding performance metrics and just use these metrics.

yeastdf <- lapply(yeastres10, estimatePerformanceMetrics,
                  alpha = seq(0.01, 0.10, by = .01), tidy = TRUE)

Finally, we merge the 10 replications to a single data.frame.

yeastdf <- dplyr::bind_rows(yeastdf, .id = "rep")

As above, we clean IHW and BL results, remove NA values, and only keep a subset of useful columns.

## subset IHW
yeastdf <- dplyr:::filter(yeastdf,
                          !(grepl("ihw", label) & param.alpha != alpha))
yeastdf <- dplyr:::mutate(yeastdf, label = gsub("(ihw)-a\\d+", "\\1", label))

## subset BL
yeastdf <- dplyr:::filter(yeastdf, ! label %in% paste0("bl-df0", c(2, 4, 5)))

yeastdf <- dplyr::select(yeastdf, rep, label, performanceMetric, alpha, value)
yeastdf <- dplyr::filter(yeastdf, !is.na(value))
head(yeastdf)
##   rep      label performanceMetric alpha  value
## 1   1 unadjusted               TPR  0.01 0.4430
## 2   1       bonf               TPR  0.01 0.1900
## 3   1         bh               TPR  0.01 0.3395
## 4   1     qvalue               TPR  0.01 0.3415
## 5   1        ihw               TPR  0.01 0.3440
## 6   1       ashq               TPR  0.01 0.3365

Finally, we summarize across replications for each method, for each metric, at each nominal threshold.

yeastdf <- dplyr::group_by(yeastdf, label, performanceMetric, alpha) 
yeastdf <- dplyr::summarize(yeastdf,
                            meanValue = mean(value),
                            seValue = sd(value) / sqrt(n()))
yeastdf <- dplyr::ungroup(yeastdf)

Now, we can plot the average and standard errors across replicates for each method. Here, we will just plot FDR and TPR.

yeastdf %>%
    dplyr::filter(performanceMetric %in% c("FDR", "TPR")) %>%
    ggplot(aes(x = alpha, y = meanValue,
               color = label,
               ymin = meanValue - seValue,
               ymax = meanValue + seValue)) + 
    geom_point() +
    geom_errorbar(width = .01 / 4, alpha = 1/4) +
    geom_line(alpha = 1/2) +
    scale_color_viridis_d("Method") +
    scale_x_continuous(breaks = seq(0, 1, .01), limits = c(0, .11)) +
    facet_wrap(~ performanceMetric, scales = 'free_y', nrow = 1) +
    ylab("average across replicates") +
    theme_bw() +
    geom_abline(aes(intercept = i_, slope = s_), color = 'red', linetype = 2,
                data = tibble(performanceMetric = 'FDR', i_ = 0, s_ = 1)) +
    ggtitle("FDR and TPR across multiple-testing methods",
            "yeast in silico experiment with informative covariate")

We have also included a red line to the FDR plot to assess whether methods are appropriately controlling the FDR at the nominal thresholds.

5 Adding Methods

The summary objects made available with this packages were constructed using an older version of the SummarizedBenchmark package. Since then, functions have been added to the package for updating benchmark comparisons and adding new methods to an existing SummarizedBenchmark object. Unfortuntately, these functions cannot be used with the current objects made available with this package.

However, the summary objects include both unadjusted p-values (as the unadjusted column) and corresponding independent covariate values (as the ind_covariate rowData column). These values can be used to apply new methods which only depend on these inputs.

dat <- tibble(pval = assay(chipres)[, "unadjusted"],
              covariate = rowData(chipres)$ind_covariate)
dat
## # A tibble: 59,596 × 2
##      pval covariate
##     <dbl>     <int>
##  1 0.0937       360
##  2 0.0764       310
##  3 0.446        460
##  4 0.542        160
##  5 0.113        310
##  6 0.312        610
##  7 0.708         60
##  8 0.347        910
##  9 0.484        210
## 10 0.761        160
## # … with 59,586 more rows

To analyze this data using the SummarizedBenchmark package, we can construct a new BenchDesign object with any collection of new methods to benchmark, and the above data as input. More details on the SummarizedBenchmark package and the BenchDesign class can be found in the package vignettes.

As an illustration of how a new method could be applied to this data, we will re-apply the Benjamini-Hochberg correction and show that the results that we obtain in this re-analysis match the results reported in the loaded SummarizedBenchmark object.

We construct a BenchDesign with a single method, newBH, and the data given above.

bh_method <- BDMethod(x = p.adjust,
                      params = rlang::quos(p = pval,
                                           method = "BH"))
new_design <- BenchDesign(newBH = bh_method, data = dat)
new_design
## BenchDesign ------------------------------------------------ 
##   benchmark data:
##     type: data 
##     names: pval, covariate 
##   benchmark methods:
##     method:  newBH; func: p.adjust

To evaluate the benchmark experiment stored in the BenchDesign object, we call buildBench.

new_res <- buildBench(new_design)
new_res
## class: SummarizedBenchmark 
## dim: 59596 1 
## metadata(1): sessions
## assays(1): default
## rownames: NULL
## rowData names(1): default
## colnames(1): newBH
## colData names(6): func.pkg func.pkg.vers ... param.method session.idx

Now that we have a SummarizedBenchmark object, we can evaluate performance metrics as before.

new_res <- addPerformanceMetric(new_res,
                                evalMetric = "rejections",
                                assay = "default")
new_df <- estimatePerformanceMetrics(new_res,
                                     alpha = seq(0.01, 0.10, by = 0.01),
                                     tidy = TRUE)

Finally, we subset on columns of interest and examine how many tests would be rejected using BH in our re-analysis.

new_df <- dplyr::select(new_df, label, value, performanceMetric, alpha)
new_df
##    label value performanceMetric alpha
## 1  newBH     0        rejections  0.01
## 2  newBH     5        rejections  0.02
## 3  newBH    12        rejections  0.03
## 4  newBH    30        rejections  0.04
## 5  newBH   660        rejections  0.05
## 6  newBH  1287        rejections  0.06
## 7  newBH  1768        rejections  0.07
## 8  newBH  2589        rejections  0.08
## 9  newBH  3435        rejections  0.09
## 10 newBH  4311        rejections  0.10

We verify that this matches the number of rejections reported in the results from above.

dplyr::filter(chipdf, label == "bh")
##    label performanceMetric alpha value
## 1     bh        rejections  0.01     0
## 2     bh        rejections  0.02     5
## 3     bh        rejections  0.03    12
## 4     bh        rejections  0.04    30
## 5     bh        rejections  0.05   660
## 6     bh        rejections  0.06  1287
## 7     bh        rejections  0.07  1768
## 8     bh        rejections  0.08  2589
## 9     bh        rejections  0.09  3435
## 10    bh        rejections  0.10  4311

Since the results are now just data.frame objects with similar columns, they can be combined to compare new results with previous results.

6 Session Information

sessionInfo()
## R version 4.2.0 RC (2022-04-19 r82224)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] SummarizedBenchmark_2.14.0  tibble_3.1.6               
##  [3] crayon_1.5.1                sessioninfo_1.2.2          
##  [5] digest_0.6.29               dplyr_1.0.8                
##  [7] mclust_5.4.9                ggplot2_3.3.5              
##  [9] BiocParallel_1.30.0         stringr_1.4.0              
## [11] rlang_1.0.2                 UpSetR_1.4.0               
## [13] tidyr_1.2.0                 benchmarkfdrData2019_1.10.0
## [15] SummarizedExperiment_1.26.0 Biobase_2.56.0             
## [17] GenomicRanges_1.48.0        GenomeInfoDb_1.32.0        
## [19] IRanges_2.30.0              S4Vectors_0.34.0           
## [21] MatrixGenerics_1.8.0        matrixStats_0.62.0         
## [23] ExperimentHub_2.4.0         AnnotationHub_3.4.0        
## [25] BiocFileCache_2.4.0         dbplyr_2.1.1               
## [27] BiocGenerics_0.42.0         knitr_1.39                 
## [29] BiocStyle_2.24.0           
## 
## loaded via a namespace (and not attached):
##  [1] bitops_1.0-7                  bit64_4.0.5                  
##  [3] filelock_1.0.2                httr_1.4.2                   
##  [5] tools_4.2.0                   bslib_0.3.1                  
##  [7] utf8_1.2.2                    R6_2.5.1                     
##  [9] DBI_1.1.2                     colorspace_2.0-3             
## [11] withr_2.5.0                   tidyselect_1.1.2             
## [13] gridExtra_2.3                 bit_4.0.4                    
## [15] curl_4.3.2                    compiler_4.2.0               
## [17] cli_3.3.0                     DelayedArray_0.22.0          
## [19] labeling_0.4.2                bookdown_0.26                
## [21] sass_0.4.1                    scales_1.2.0                 
## [23] rappdirs_0.3.3                rmarkdown_2.14               
## [25] XVector_0.36.0                pkgconfig_2.0.3              
## [27] htmltools_0.5.2               highr_0.9                    
## [29] fastmap_1.1.0                 RSQLite_2.2.12               
## [31] shiny_1.7.1                   farver_2.1.0                 
## [33] jquerylib_0.1.4               generics_0.1.2               
## [35] jsonlite_1.8.0                RCurl_1.98-1.6               
## [37] magrittr_2.0.3                GenomeInfoDbData_1.2.8       
## [39] Matrix_1.4-1                  Rcpp_1.0.8.3                 
## [41] munsell_0.5.0                 fansi_1.0.3                  
## [43] lifecycle_1.0.1               stringi_1.7.6                
## [45] yaml_2.3.5                    zlibbioc_1.42.0              
## [47] plyr_1.8.7                    grid_4.2.0                   
## [49] blob_1.2.3                    parallel_4.2.0               
## [51] promises_1.2.0.1              lattice_0.20-45              
## [53] Biostrings_2.64.0             KEGGREST_1.36.0              
## [55] magick_2.7.3                  pillar_1.7.0                 
## [57] glue_1.6.2                    BiocVersion_3.15.2           
## [59] evaluate_0.15                 BiocManager_1.30.17          
## [61] png_0.1-7                     vctrs_0.4.1                  
## [63] httpuv_1.6.5                  gtable_0.3.0                 
## [65] purrr_0.3.4                   assertthat_0.2.1             
## [67] cachem_1.0.6                  xfun_0.30                    
## [69] mime_0.12                     xtable_1.8-4                 
## [71] later_1.3.0                   viridisLite_0.4.0            
## [73] AnnotationDbi_1.58.0          memoise_2.0.1                
## [75] ellipsis_0.3.2                interactiveDisplayBase_1.34.0