Abstract
DEGreport package version: 1.32.0Lorena Pantano Harvard TH Chan School of Public Health, Boston, US
We are going to do a differential expression analysis with edgeR/DESeq2. We have an object that is coming from the edgeR package. It contains a gene count matrix for 85 TSI HapMap individuals, and the gender information. With that, we are going to apply the glmFit
function or DESeq2 to get genes differentially expressed between males and females.
library(DESeq2)
idx <- c(1:10, 75:85)
dds <- DESeqDataSetFromMatrix(assays(humanGender)[[1]][1:1000, idx],
colData(humanGender)[idx,], design=~group)
dds <- DESeq(dds)
res <- results(dds)
We need to extract the experiment design data.frame where the condition is Male or Female.
A main assumption in library size factor calculation of edgeR and DESeq2 (and others) is that the majority of genes remain unchanged. Plotting the distribution of gene ratios between each gene and the average gene can show how true this is. Not super useful for many samples because the plot becomes crowed.
p-value distribution gives an idea on how well you model is capturing the input data and as well whether it could be some problem for some set of genes. In general, you expect to have a flat distribution with peaks at 0 and 1. In this case, we add the mean count information to check if any set of genes are enriched in any specific p-value range.
Variation (dispersion) and average expression relationship shouldn’t be a factor among the differentially expressed genes. When plotting average mean and standard deviation, significant genes should be randomly distributed.
In this case, it would be good to look at the ones that are totally outside the expected correlation.
You can put this tree plots together using degQC
.
Another important analysis to do if you have covariates is to calculate the correlation between PCs from PCA analysis to different variables you may think are affecting the gene expression. This is a toy example of how the function works with raw data, where clearly library size correlates with some of the PCs.
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by the
## caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by the
## caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by the
## caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by the
## caller; using TRUE
Also, the correlation among covariates and metrics from the analysis can be tested. This is useful when the study has multiple variables, like in clinical trials. The following code will return a correlation table, and plot the correlation heatmap for all the covariates and metrics in a table.
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by the
## caller; using TRUE
## Warning in type.convert.default(X[[i]], ...): 'as.is' should be specified by the
## caller; using TRUE
## Warning: The input is a data frame-like object, convert it to a matrix.
## [1] "cor" "corMat" "fdrMat" "plot"
A quick HTML report can be created with createReport
to show whether a DE analysis is biased to a particular set of genes. It contains the output of degQC,
degVB and degMB
.
Here, we show some useful plots for differentially expressed genes.
DEGSet
is a class to store the DE results like the one from results
function. DESeq2 offers multiple way to ask for contrasts/coefficients. With degComps
is easy to get multiple results in a single object:
degs <- degComps(dds, combs = "group",
contrast = list("group_Male_vs_Female",
c("group", "Female", "Male")))
names(degs)
## [1] "group_Male_vs_Female" "group_Female_vs_Male"
degs
contains 3 elements, one for each contrast/coefficient asked for. It contains the results output in the element raw
and the output of lfcShrink
in the element shrunken
. To obtain the results from one of them, use the method dge
:
## log2 fold change (MAP): group Male vs Female
## Wald test p-value: group Male vs Female
## DataFrame with 1000 rows and 6 columns
## baseMean log2FoldChange lfcSE stat pvalue
## <numeric> <numeric> <numeric> <numeric> <numeric>
## ENSG00000067048 1025.0378 1.939488 0.1006940 23.99438 3.18302e-127
## ENSG00000012817 411.5439 3.700564 0.0989888 21.80452 2.10214e-105
## ENSG00000067646 169.8148 3.322846 0.0995193 15.48385 4.45984e-54
## ENSG00000005889 670.8619 -0.489435 0.0929363 -5.26371 1.41179e-07
## ENSG00000006757 92.6611 -0.472926 0.0992749 -4.75701 1.96486e-06
## ... ... ... ... ... ...
## ENSG00000068120 1214.097 -0.000114322 0.0797227 -0.00143400 0.998856
## ENSG00000072062 935.317 0.000559219 0.0915352 0.00610872 0.995126
## ENSG00000076770 1019.796 0.000850082 0.1016663 0.00836193 0.993328
## ENSG00000078967 166.422 0.000415745 0.0959758 0.00432971 0.996545
## ENSG00000079246 5226.339 0.000149584 0.0926205 0.00161500 0.998711
## padj
## <numeric>
## ENSG00000067048 3.18302e-124
## ENSG00000012817 1.05107e-102
## ENSG00000067646 1.48661e-51
## ENSG00000005889 3.52946e-05
## ENSG00000006757 3.92971e-04
## ... ...
## ENSG00000068120 0.998856
## ENSG00000072062 0.998856
## ENSG00000076770 0.998856
## ENSG00000078967 0.998856
## ENSG00000079246 0.998856
By default it would output the shrunken
table always, as defined by degDefault
, that contains the default table to get.
To get the original results table, use the parameter as this:
## # A tibble: 1,000 × 7
## gene baseMean log2FoldChange lfcSE stat pvalue padj
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 ENSG00000067048 1025. 10.2 0.423 24.0 3.18e-127 3.18e-124
## 2 ENSG00000012817 412. 9.24 0.424 21.8 2.10e-105 1.05e-102
## 3 ENSG00000067646 170. 10.2 0.658 15.5 4.46e- 54 1.49e- 51
## 4 ENSG00000005889 671. -0.692 0.131 -5.26 1.41e- 7 3.53e- 5
## 5 ENSG00000006757 92.7 -0.767 0.161 -4.76 1.96e- 6 3.93e- 4
## 6 ENSG00000073282 220. -1.87 0.421 -4.44 8.89e- 6 1.48e- 3
## 7 ENSG00000005302 2027. -0.742 0.176 -4.21 2.59e- 5 3.69e- 3
## 8 ENSG00000005020 1234. 0.389 0.0952 4.08 4.44e- 5 5.56e- 3
## 9 ENSG00000003400 394. 0.680 0.177 3.85 1.17e- 4 1.31e- 2
## 10 ENSG00000069702 107. -1.63 0.459 -3.56 3.71e- 4 3.71e- 2
## # … with 990 more rows
Note that the format of the output can be changed to tibble, or data.frame with a third parameter tidy
.
The table will be always sorted by padj.
And easy way to get significant genes is:
## [1] "ENSG00000012817" "ENSG00000067646" "ENSG00000067048" "ENSG00000005889"
## [5] "ENSG00000006757" "ENSG00000005302" "ENSG00000003400" "ENSG00000073282"
## [9] "ENSG00000005020" "ENSG00000069702"
This function can be used as well for a list of comparisons:
## [1] "ENSG00000012817" "ENSG00000067646" "ENSG00000067048" "ENSG00000005889"
## [5] "ENSG00000006757" "ENSG00000005302" "ENSG00000003400" "ENSG00000073282"
## [9] "ENSG00000005020" "ENSG00000069702"
And it can returns the full table for a list:
## # A tibble: 10 × 7
## gene log2FoldChange padj log2FoldChange_gro… log2FoldChange_…
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 ENSG00000003400 0.388 1.31e- 2 -0.494 0.388
## 2 ENSG00000005020 0.319 5.56e- 3 -0.351 0.319
## 3 ENSG00000005302 0.541 3.69e- 3 0.541 -0.425
## 4 ENSG00000005889 0.573 3.53e- 5 0.573 -0.489
## 5 ENSG00000006757 0.585 3.93e- 4 0.585 -0.473
## 6 ENSG00000012817 3.70 1.05e-102 -5.01 3.70
## 7 ENSG00000067048 1.94 3.18e-124 -3.63 1.94
## 8 ENSG00000067646 3.32 1.49e- 51 -4.43 3.32
## 9 ENSG00000069702 0.453 3.71e- 2 0.453 -0.260
## 10 ENSG00000073282 0.582 1.48e- 3 0.582 -0.339
## # … with 2 more variables: padj_group_Female_vs_Male <dbl>,
## # padj_group_Male_vs_Female <dbl>
Since log2FoldChange are shrunken, the method for DEGSet class now can plot these changes as follow:
The blue arrows indicate how foldchange is affected by this new feature.
As well, it can plot the original MA plot:
or the correlation between the original log2FoldChange and the new ones:
Volcano plot using the output of DESeq2. It mainly needs data.frame with two columns (logFC and pVal). Specific genes can be plot using the option plot\_text
(subset of the previous data.frame with a 3rd column to be used to plot the gene name).
res[["id"]] <- row.names(res)
show <- as.data.frame(res[1:10, c("log2FoldChange", "padj", "id")])
degVolcano(res[,c("log2FoldChange", "padj")], plot_text = show)
## Warning: ggrepel: 10 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
Note that the function is compatible with DEGset. Using degVolcano(degs[[1]])
is valid.
Plot top genes coloring by group. Very useful for experiments with nested groups. xs
can be time
or WT
/KO
, and group
can be treated
/untreated
. Another classification can be added, like batch
that will plot points with different shapes.
Another option for plotting genes in a wide format:
Markers can be used to show whether different conditions are enriched in different markers. For instance, in this example, Females and Males show different total expression for chromosome X/Y markers
If you have a DESeq2 object, you can use degResults to create a full report with markdown code inserted, including figures and table with top de-regulated genes, GO enrichment analysis and heatmaps and PCA plots. If you set , different files will be saved there.
resreport <- degResults(dds = dds, name = "test", org = NULL,
do_go = FALSE, group = "group", xs = "group",
path_results = NULL)
## ## Comparison: test {.tabset}
##
##
## [1] "DESeqResults object of length 6 with 2 metadata columns"<br>[2] NA <br>[3] NA <br>[4] NA <br>[5] NA <br>[6] NA <br>[7] NA <br>[8] NA
##
##
## Differential expression file at: test_de.csv
##
## Normalized counts matrix file at: test_log2_counts.csv
##
## ### MA plot plot
##
##
## ### Volcano plot
##
##
##
## ### QC for DE genes
##
##
## ### Most significants, FDR< 0.05 and log2FC > 0.1 : 10
##
##
##
## ### Plots top 9 most significants
##
##
##
## ### Top DE table
##
##
##
## | | baseMean| log2FoldChange| lfcSE| stat| pvalue| padj| absMaxLog2FC|
## |:---------------|----------:|--------------:|---------:|---------:|---------:|---------:|------------:|
## |ENSG00000067048 | 1025.03783| 10.1571705| 0.4233146| 23.994380| 0.0000000| 0.0000000| 10.1571705|
## |ENSG00000012817 | 411.54387| 9.2394007| 0.4237379| 21.804517| 0.0000000| 0.0000000| 9.2394007|
## |ENSG00000067646 | 169.81477| 10.1874916| 0.6579432| 15.483847| 0.0000000| 0.0000000| 10.1874916|
## |ENSG00000005889 | 670.86191| -0.6919265| 0.1314523| -5.263708| 0.0000001| 0.0000353| 0.6919265|
## |ENSG00000006757 | 92.66111| -0.7666012| 0.1611520| -4.757006| 0.0000020| 0.0003930| 0.7666012|
## |ENSG00000073282 | 220.15603| -1.8685615| 0.4206120| -4.442482| 0.0000089| 0.0014821| 1.8685615|
## |ENSG00000005302 | 2026.54990| -0.7418952| 0.1763412| -4.207157| 0.0000259| 0.0036943| 0.7418952|
## |ENSG00000005020 | 1233.86316| 0.3888370| 0.0952312| 4.083085| 0.0000444| 0.0055552| 0.3888370|
## |ENSG00000003400 | 393.62677| 0.6803243| 0.1766475| 3.851310| 0.0001175| 0.0130542| 0.6803243|
## |ENSG00000069702 | 106.67010| -1.6323189| 0.4585611| -3.559654| 0.0003713| 0.0371343| 1.6323189|
## |ENSG00000010278 | 84.30823| 1.2035871| 0.3554857| 3.385754| 0.0007098| 0.0645300| 1.2035871|
## |ENSG00000023171 | 165.31692| -1.4022259| 0.4236024| -3.310240| 0.0009322| 0.0776799| 1.4022259|
## |ENSG00000072501 | 3694.76013| -0.5604815| 0.1707989| -3.281529| 0.0010325| 0.0794200| 0.5604815|
## |ENSG00000070018 | 119.89049| -1.0921227| 0.3512409| -3.109327| 0.0018751| 0.1339388| 1.0921227|
## |ENSG00000059377 | 131.98111| 0.8405094| 0.2744635| 3.062372| 0.0021959| 0.1463935| 0.8405094|
## |ENSG00000008277 | 377.43955| -0.6368732| 0.2136506| -2.980910| 0.0028739| 0.1796208| 0.6368732|
## |ENSG00000005059 | 479.12528| 0.4225402| 0.1492246| 2.831571| 0.0046320| 0.2289281| 0.4225402|
## |ENSG00000012963 | 1829.21224| 0.2471040| 0.0861859| 2.867104| 0.0041425| 0.2289281| 0.2471040|
## |ENSG00000038427 | 100.87217| -1.0743654| 0.3810269| -2.819658| 0.0048075| 0.2289281| 1.0743654|
## |ENSG00000068079 | 1035.17996| 0.4075632| 0.1415563| 2.879160| 0.0039874| 0.2289281| 0.4075632|
Browsing gene expression can help to validate results or select some gene for downstream analysis. Run the following lines if you want to visualize your expression values by condition:
In this section, we show how to detect pattern of expression. Mainly useful when data is a time course experiment. degPatterns
needs a expression matrix, the design experiment and the column used to group samples.
This section shows some useful functions during DEG analysis.
degFilter
helps to filter genes with a minimum read count by group.
gene in original count matrix: 1000
filter_count <- degFilter(counts(dds),
design, "group",
min=1, minreads = 50)
cat("gene in final count matrix", nrow(filter_count))
gene in final count matrix 940
This functions allows you to create colors for metadata columns to be used as annotation for columns in a heatmap figure.
## R version 4.2.0 RC (2022-04-19 r82224)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] grid stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] pheatmap_1.0.12 ComplexHeatmap_2.12.0
## [3] DESeq2_1.36.0 SummarizedExperiment_1.26.0
## [5] Biobase_2.56.0 MatrixGenerics_1.8.0
## [7] matrixStats_0.62.0 GenomicRanges_1.48.0
## [9] GenomeInfoDb_1.32.0 IRanges_2.30.0
## [11] S4Vectors_0.34.0 BiocGenerics_0.42.0
## [13] DEGreport_1.32.0 BiocStyle_2.24.0
##
## loaded via a namespace (and not attached):
## [1] colorspace_2.0-3 rjson_0.2.21
## [3] ellipsis_0.3.2 circlize_0.4.14
## [5] XVector_0.36.0 GlobalOptions_0.1.2
## [7] ggdendro_0.1.23 clue_0.3-60
## [9] farver_2.1.0 MatrixModels_0.5-0
## [11] ggrepel_0.9.1 bit64_4.0.5
## [13] AnnotationDbi_1.58.0 fansi_1.0.3
## [15] codetools_0.2-18 splines_4.2.0
## [17] logging_0.10-108 mnormt_2.0.2
## [19] doParallel_1.0.17 cachem_1.0.6
## [21] geneplotter_1.74.0 knitr_1.38
## [23] jsonlite_1.8.0 Nozzle.R1_1.1-1
## [25] Cairo_1.5-15 broom_0.8.0
## [27] annotate_1.74.0 cluster_2.1.3
## [29] png_0.1-7 BiocManager_1.30.17
## [31] compiler_4.2.0 httr_1.4.2
## [33] backports_1.4.1 assertthat_0.2.1
## [35] Matrix_1.4-1 fastmap_1.1.0
## [37] limma_3.52.0 cli_3.3.0
## [39] lasso2_1.2-22 quantreg_5.88
## [41] htmltools_0.5.2 tools_4.2.0
## [43] gtable_0.3.0 glue_1.6.2
## [45] GenomeInfoDbData_1.2.8 dplyr_1.0.8
## [47] Rcpp_1.0.8.3 jquerylib_0.1.4
## [49] vctrs_0.4.1 Biostrings_2.64.0
## [51] nlme_3.1-157 iterators_1.0.14
## [53] psych_2.2.3 xfun_0.30
## [55] stringr_1.4.0 lifecycle_1.0.1
## [57] XML_3.99-0.9 edgeR_3.38.0
## [59] zlibbioc_1.42.0 MASS_7.3-57
## [61] scales_1.2.0 parallel_4.2.0
## [63] SparseM_1.81 RColorBrewer_1.1-3
## [65] yaml_2.3.5 memoise_2.0.1
## [67] ggplot2_3.3.5 sass_0.4.1
## [69] reshape_0.8.9 stringi_1.7.6
## [71] RSQLite_2.2.12 highr_0.9
## [73] genefilter_1.78.0 foreach_1.5.2
## [75] BiocParallel_1.30.0 shape_1.4.6
## [77] rlang_1.0.2 pkgconfig_2.0.3
## [79] bitops_1.0-7 evaluate_0.15
## [81] lattice_0.20-45 purrr_0.3.4
## [83] labeling_0.4.2 cowplot_1.1.1
## [85] bit_4.0.4 tidyselect_1.1.2
## [87] plyr_1.8.7 magrittr_2.0.3
## [89] R6_2.5.1 magick_2.7.3
## [91] generics_0.1.2 DelayedArray_0.22.0
## [93] DBI_1.1.2 mgcv_1.8-40
## [95] withr_2.5.0 pillar_1.7.0
## [97] survival_3.3-1 KEGGREST_1.36.0
## [99] RCurl_1.98-1.6 tibble_3.1.6
## [101] crayon_1.5.1 utf8_1.2.2
## [103] tmvnsim_1.0-2 rmarkdown_2.14
## [105] GetoptLong_1.0.5 locfit_1.5-9.5
## [107] blob_1.2.3 ConsensusClusterPlus_1.60.0
## [109] digest_0.6.29 xtable_1.8-4
## [111] tidyr_1.2.0 munsell_0.5.0
## [113] bslib_0.3.1