Package 'rifi'

October 11, 2022

Title 'rifi' anyalyses data from rifampicin time series ceated by microarray or RNAseq

Version 1.0.0

Description 'rifi' analyses data from rifampicin time series created by microarray or RNAseq. 'rifi' is a transcriptome data analysis tool for the holistic identification of transcription and decay associated processes.

The decay constants and the delay of the onset of decay is fitted for each probe/bin. Subsequently, probes/bins of equal properties

are combined into segments by dynamic programming, independent of a existing genome annotation. This allows to detect transcript segments

of different stability or transcriptional events within one annotated gene.

In addition to the classic decay constant/half-

life analysis, 'rifi' detects processing sites, transcription pausing sites, internal transcription start sites in operons, sites of partial transcription termination in operons, identifies areas of likely transcriptional interference by the collision mechanism and gives an estimate of the transcription velocity.

All data are integrated to give an estimate of continous transcriptional units, i.e. operons. Comprehensive output tables and visualizations of the full genome result and the individual fits for all probes/bins are produced.

Depends R (>= 4.1)

Imports car, cowplot, doMC, parallel, dplyr, egg, foreach, ggplot2, graphics, grDevices, grid, methods, nls2, nnet, rlang, S4Vectors, scales, stats, stringr, SummarizedExperiment, tibble, rtracklayer, utils

Suggests DescTools, knitr, rmarkdown, BiocStyle

VignetteBuilder knitr

biocViews RNASeq, DifferentialExpression, GeneRegulation, Transcriptomics, Regression, Microarray, Software

BugReports https://github.com/CyanolabFreiburg/rifi

License GPL-3 + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.12
Language en-US
git_url https://git.bioconductor.org/packages/rifi
git_branch RELEASE_3_15
git_last_commit a495442
git_last_commit_date 2022-04-27
Date/Publication 2022-10-11
Author Jens Georg [aut, cre]
Maintainer Jens Georg <jens.georg@biologie.uni-freiburg.de></jens.georg@biologie.uni-freiburg.de>

${\sf R}$ topics documented:

apply_ancova 3

nls2_fit	17
penalties_e_coli	18
penalties_minimal	19
penalties_synechocystis_6803	50
predict_ps_itss	51
preprocess_e_coli	53
preprocess_minimal	
preprocess_synechocystis_6803	54
res_minimal	55
rifi_fit	57
rifi_fragmentation	
rifi_penalties	
rifi_preprocess	
rifi_stats	
rifi_summary	
rifi_visualization	
rifi_wrapper	73
segment_pos	
stats_e_coli	
stats_minimal	
stats_synechocystis_6803	
summary_e_coli	
summary_minimal	
summary_synechocystis_6803	
TI_fit	
TUgether	
viz_pen_obj	
wrapper e coli	
wrapper_minimal	
wrapper_summary_synechocystis_6803	
9	96

apply_ancova

apply_ancova: is a statistical test to check variances between 2 segments showing pausing site (ps) or internal starting site (ITSS) independently. apply_ancova: is a statistical test to check if fragments showing ps and ITSS events have significant slope using Ancova test. The function uses ancova test. Ancova is applied when the data contains independent variables, dependent variables and covariant variables. In this case, segments are independent variables, position is the dependent variable and the delay is the covariant. The dataframe is prepared as depicted below. The lm fit is applied and p_value is extracted delay position segment S1 S1 S1 S1 S2 S2 S2 S2

4 apply_ancova

Description

apply_ancova: is a statistical test to check variances between 2 segments showing pausing site (ps) or internal starting site (ITSS) independently. apply_ancova: is a statistical test to check if fragments showing ps and ITSS events have significant slope using Ancova test. The function uses ancova test. Ancova is applied when the data contains independent variables, dependent variables and covariant variables. In this case, segments are independent variables, position is the dependent variable and the delay is the covariant. The dataframe is prepared as depicted below. The lm fit is applied and p_value is extracted delay position segment S1 S1 S1 S2 S2 S2 S2

Usage

```
apply_ancova(inp)
```

Arguments

inp

SummarizedExperiment: the input data frame with correct format.

Value

the SummarizedExperiment with the columns regarding statistics:

```
ID: The bin/probe specific ID
```

position: The bin/probe specific position **delay:** The delay value of the bin/probe

intercept: The vintercept of fit through the respective delay fragment

slope: The slope of the fit through the respective delay fragment

```
pausing_site:
iTSS_I:
```

ps_ts_fragment:

event_ps_itss_p_value_Ttest:

p_value_slope:

delay_frg_slope:

velocity_ratio:

```
data(stats_minimal)
apply_ancova(inp = stats_minimal)
```

apply_event_position 5

apply_event_position

apply_event_position: is a short version of apply_Ttest_delay function to extract event time duration as pausing site or iTSS happens.

Description

apply_event_position adds a new column with the duration.

Usage

```
apply_event_position(inp)
```

Arguments

inp

SummarizedExperiment: the input data frame with correct format.

Value

the SummarizedExperiment with the columns regarding statistics:

```
ID: The bin/probe specific ID
```

position: The bin/probe specific position

delay: The delay value of the bin/probe

pausing_site:

iTSS_I:

ps_ts_fragment:

 $event_ps_itss_p_value_Ttest:$

p_value_slope:

delay_frg_slope:

velocity_ratio:

event_position:

```
data(stats_minimal)
apply_event_position(inp = stats_minimal)
```

6 apply_manova

apply_manova

apply_manova: this function checks if the ratio of hl ratio and intensity ratio is statistically significant. apply_manova compares the variance between two fold-changes,HL and intensity within the same TU (half-life frgA/half-life frgB/ intensity frgA/intensity frgB). HL fragment could cover two intensity fragments therefore this function sets first fragments borders and uses manova_function. Manova checks the variance between 2 segments (independent variables) and two dependents variables (HL and intensity).

Description

The functions used is: manova_function: applies Manova statistical test. The dataframe template is depicted below. The lm fit is applied and p_value is extracted. half_life intensity segment 1.10479637 1244.078 S1 1.19222097 1894.595 S1 1.16218422 1668.416 S1 1.08733743 1428.831 S1 0.72964160 1381.102 S2 0.06750874 2429.843 S2 0.61911329 1749.105 S2 0.51840661 1122.775 S2

Usage

apply_manova(inp)

Arguments

inp

SummarizedExperiment: the input data frame with correct format.

Value

the probe data frame with the columns regarding statistics:

ID: The bin/probe specific ID

position: The bin/probe specific position

intensity: The relative intensity at time point 0

half_life: The half-life of the bin/probe

HL_fragment: The half-life fragment the bin belongs to

HL_mean_fragment: The mean half-life value of the respective half-life fragment

intensity_fragment: The intensity fragment the bin belongs to

intensity_mean_fragment: The mean intensity value of the respective intensity fragment

TU: The overarching transcription unit

pausing_site:

iTSS I:

ps_ts_fragment:

event_ps_itss_p_value_Ttest:

apply_Ttest_delay 7

```
p_value_slope:
delay_frg_slope:
velocity_ratio:
event_duration:
event_position:
FC_HL:
FC_fragment_HL:
p_value_HL:
FC_intensity:
FC_fragment_intensity:
p_value_intensity:
FC_HL_intensity:
FC_HL_intensity_fragment:
FC_HL_adapted:
synthesis_ratio:
synthesis_ratio_event:
p_value_Manova:
```

Examples

```
data(stats_minimal)
apply_manova(inp = stats_minimal)
```

apply_Ttest_delay

apply_Ttest_delay: is a statistical test to check the significance of the point between 2 segments showing pausing site (ps) and internal starting site (ITSS) independently. apply_Ttest_delay uses t-test. The last point from the first segment and the first point from the second segment are selected and added to the residuals of each model. The sum is subjected to t-test.

Description

apply_Ttest_delay: is a statistical test to check the significance of the point between 2 segments showing pausing site (ps) and internal starting site (ITSS) independently. apply_Ttest_delay uses t-test. The last point from the first segment and the first point from the second segment are selected and added to the residuals of each model. The sum is subjected to t-test.

Usage

```
apply_Ttest_delay(inp)
```

8 apply_t_test

Arguments

inp

SummarizedExperiment: the input data frame with correct format.

Value

the SummarizedExperiment with the columns regarding statistics:

```
ID: The bin/probe specific ID
```

position: The bin/probe specific position **delay:** The delay value of the bin/probe

delay_fragment: The delay fragment the bin belongs to

pausing_site:
iTSS_I:
ps_ts_fragment:

event_ps_itss_p_value_Ttest:

Examples

```
data(stats_minimal)
apply_Ttest_delay(inp = stats_minimal)
```

apply_t_test

apply_t_test: it uses the statistical t_test to check if the fold-change of half-life (HL) fragments and the fold-change intensity fragments respectively are significant.

Description

apply_t_test compares the mean of two neighboring fragments within the same TU to check if the fold-change is significant. Fragments with distance above threshold are not subjected to t-test. Dataframes with less than 3 rows are excluded.

Usage

```
apply_t_t(inp, threshold = 300)
```

Arguments

inp SummarizedExperiment: the input data frame with correct format.

threshold integer: threshold.

apply_t_test 9

Details

The functions used are:

1. fragment_function: checks number of fragments inside TU, less than 2 are excluded otherwise they are gathered for analysis.

2. t_test_function: exclude dataframes with less than 3 rows, makes fold-change and apply t-test, assign fragments names and ratio, add columns with the corresponding p_values.

Value

the SummarizedExperiment with the columns regarding statistics:

```
ID: The bin/probe specific ID
position: The bin/probe specific position
intensity: The relative intensity at time point 0
half_life: The half-life of the bin/probe
HL_fragment: The half-life fragment the bin belongs to
HL_mean_fragment: The mean half-life value of the respective half-life fragment
intensity_fragment: The intensity fragment the bin belongs to
intensity_mean_fragment: The mean intensity value of the respective intensity fragment
TU: The overarching transcription unit
pausing_site:
iTSS_I:
ps_ts_fragment:
event_ps_itss_p_value_Ttest:
p_value_slope:
delay_frg_slope:
velocity_ratio:
event_duration:
event_position:
FC_HL:
FC fragment HL:
p_value_HL:
FC_intensity:
FC_fragment_intensity:
p_value_intensity:
```

```
data(stats_minimal)
apply_t_test(inp = stats_minimal, threshold = 300)
```

10 apply_t_test_ti

apply_t_test_ti: compares the mean of two neighboring TI fragments within the same TU. apply_t_test_ti: this function uses the statistical t_test to check if two neighboring TI fragments are significant.

Description

apply_t_test_ti: compares the mean of two neighboring TI fragments within the same TU. apply_t_test_ti: this function uses the statistical t_test to check if two neighboring TI fragments are significant.

Usage

```
apply_t_test_ti(inp)
```

Arguments

inp SummarizedExperiment: the input data frame with correct format.

Value

the SummarizedExperiment with the columns regarding statistics:

ID: The bin/probe specific ID

position: The bin/probe specific position

flag: Information on which fitting model is appliedposition_segment: The position based segment

TI_termination_factor: The termination factor of the bin/probe

TU: The overarching transcription unit

TI_termination_fragment: The TI fragment the bin belongs to

TI_mean_termination_factor: The mean termination factor of the respective TI fragment

pausing_site:
iTSS_I:

ps_ts_fragment:

event_ps_itss_p_value_Ttest:

p_value_slope:

delay_frg_slope:

velocity_ratio:

event_duration:

event_position:

FC HL:

FC_fragment_HL:

check_input 11

```
p_value_HL:
FC_intensity:
FC_fragment_intensity:
p_value_intensity:
FC_HL_intensity:
FC_HL_intensity_fragment:
FC_HL_adapted:
synthesis_ratio:
synthesis_ratio_event:
p_value_Manova:
p_value_TI:
TI_fragments_p_value:
```

Examples

```
data(stats_minimal)
apply_t_test_ti(inp = stats_minimal)
```

check_input

check_input: reviews the input given by the user. 'check_input' stops the operation if the input data frame has severe faults. Less severe faults lead to the removal of wrong IDs and a warnings describing the problem. The Summarized Experiment colData must have the columns "timepoint" with the timepoints convertible to numeric and containing the timepoint 0. If replicates are used the column in colData must be called "replicate". The replicate must be convertible to numeric. In the RowRanges, optionally, IDs can be given as character (except ",","\","\","_\"),but need to refer to a unique position/strand combination. Strand information need to be given. The relative intensity in the assay must be numeric. The relative intensity for the first time point cannot be 0 or NA.

Description

check_input: reviews the input given by the user. 'check_input' stops the operation if the input data frame has severe faults. Less severe faults lead to the removal of wrong IDs and a warnings describing the problem. The Summarized Experiment colData must have the columns "timepoint" with the timepoints convertible to numeric and containing the timepoint 0. If replicates are used the column in colData must be called "replicate". The replicate must be convertible to numeric. In the RowRanges, optionally, IDs can be given as character (except ",","|","_"),but need to refer to a unique position/strand combination. Strand information need to be given. The relative intensity in the assay must be numeric. The relative intensity for the first time point cannot be 0 or NA.

12 dataframe_summary

Usage

```
check_input(inp, thrsh = 0)
```

Arguments

inp SummarizedExperiment: the input data frame with correct format.

thrsh numeric: the minimal allowed intensity for time point "0".

Value

the SummarizedExperiment object: checked, and with position, ID and filtration added to the rowRanges.

Examples

```
data(example_input_minimal)
check_input(inp = example_input_minimal, thrsh = 0)
```

dataframe_summary

dataframe_summary: creates two tables relating gene annotation to fragments. dataframe_summary creates two tables summary of segments and their half-lives. The first output is bin/probe features and the second one is intensity fragment based. The dataframe_summary creates one table with feature_type, gene, locus_tag, position, strand, TU, delay_fragment, HL_fragment, half_life, intensity_fragment, intensity and velocity. The second table is similar to the first one but in compact form. It contains the same columns, the only difference is on position where a start and end position are indicated separately. Strand is indicated in case of stranded data to select the corresponding positions.

Description

dataframe_summary: creates two tables relating gene annotation to fragments. dataframe_summary creates two tables summary of segments and their half-lives. The first output is bin/probe features and the second one is intensity fragment based. The dataframe_summary creates one table with feature_type, gene, locus_tag, position, strand, TU, delay_fragment, HL_fragment, half_life, intensity_fragment, intensity and velocity. The second table is similar to the first one but in compact form. It contains the same columns, the only difference is on position where a start and end position are indicated separately. Strand is indicated in case of stranded data to select the corresponding positions.

Usage

```
dataframe_summary(data, input)
```

dataframe_summary 13

Arguments

data SummarizedExperiment: the input data frame with correct format.

input dataframe: dataframe from event_dataframe function.

Value

bin_df: all information regarding bins:

feature_type:

gene:

locus_tag:

TU: The overarching transcription unit

delay_fragment: The delay fragment the bin belongs to **HL_fragment:** The half-life fragment the bin belongs to

half_life: The half-life of the bin/probe

intensity_fragment: The intensity fragment the bin belongs to

intensity: The relative intensity at time point 0

velocity: The velocity value of the bin

frag_df: all information regarding fragments:

feature_type:

gene:

locus_tag:

strand: The bin/probe specific strand **TU:** The overarching transcription unit

delay_fragment: The delay fragment the bin belongs to **HL_fragment:** The half-life fragment the bin belongs to

half_life: The half-life of the fragment

intensity_fragment: The intensity fragment the bin belongs to

intensity: The relative intensity at time point 0

velocity: The velocity value of the respective delay fragment

```
data(stats_minimal)
data(res_minimal)
dataframe_summary(data = stats_minimal, input = res_minimal)
```

dataframe_summary_events

dataframe_summary_events creates one table with all events between the segments. The dataframe_summary_events creates one table with the following columns: event, features, p_value, event_position, event_duration, position, region, gene, locus_tag, strand, TU, segment_1, segment_2, length, velocity_ratio, FC_HL, FC_intensity, FC_HL/FC_intensity. The columns are:

- 1. event: event type, pausing site, iTSS_I, iTSS_II, Termination, HL_event, Int_event, HL_Int_event and velocity_change.
- 2. FC_HL: fold change between 2 half-life fragments.
- 3. FC_intensity: fold change between 2 intensity fragments.
- 4. FC_HL/FC_intensity: ratio of fold change between 2 half-life fragments and fold change between 2 intensity fragments.
- 5. velocity_ratio: ratio between any two fragment where the event happen.
- 6. p_value: depending on the event, t-test, manova test p_value is assigned.
- 7. feature_type: indicated on the output data frame as region, are the feature type covering the event.
- 8. gene: gene covering the event.
- 9. locus_tag: locus_tag covering the event.
- 10. strand: +/- indicated in case of stranded data.
- 11. TU: TU covering the event.
- 12. segment_1: the first segment of the event, includes the segment, TU, delay fragment in case of ps or iTSS_I. The rest of the events include HL fragment and intensity fragment.
- 13. segment_2: same description as segment_1 but is the second fragment of the event.
- 14. event_position: the position of event, calculated dividing the last position of the first fragment and the first position of the next fragment on 2.
- 15. event_duration: the difference (min) between 2 delay fragment when ps or iTSS_I happen.
- 16. gap_fragments: length in position (nt), calculated by the difference between the last position of the first fragment and the first position of the second fragment.
- 17. features: number of segment involved on the event.

Description

dataframe_summary_events creates one table with all events between the segments. The dataframe_summary_events creates one table with the following columns: event, features, p_value, event_position, event_duration, position, region, gene, locus_tag, strand, TU, segment_1, segment_2, length, velocity_ratio, FC_HL, FC_intensity, FC_HL/FC_intensity. The columns are:

- 1. event: event type, pausing site, iTSS_I, iTSS_II, Termination, HL_event, Int_event, HL_Int_event and velocity_change.
- 2. FC_HL: fold change between 2 half-life fragments.
- 3. FC_intensity: fold change between 2 intensity fragments.
- 4. FC_HL/FC_intensity: ratio of fold change between 2 half-life fragments and fold change between 2 intensity fragments.
- 5. velocity_ratio: ratio between any two fragment where the event happen.
- 6. p_value: depending on the event, t-test, manova test p_value is assigned.
- 7. feature_type: indicated on the output data frame as region, are the feature type covering the event.
- 8. gene: gene covering the event.
- 9. locus_tag: locus_tag covering the event.
- 10. strand: +/- indicated in case of stranded data.
- 11. TU: TU covering the event.
- 12. segment_1: the first segment of the event, includes the segment, TU, delay fragment in case of ps or iTSS I. The rest of the events include HL fragment and intensity fragment.
- 13. segment_2: same description as segment_1 but is the second fragment of the event.
- 14. event_position: the position of event, calculated dividing the last position of the first fragment and the first position of the next fragment on 2.
- 15. event_duration: the difference (min) between 2 delay fragment when ps or iTSS_I happen.
- 16. gap_fragments: length in position (nt), calculated by the difference between the last position of the first fragment and the first position of the second fragment.
- 17. features: number of segment involved on the event.

Usage

```
dataframe_summary_events(data, data_annotation)
```

Arguments

data SummarizedExperiment: the input data frame with correct format. data_annotation

dataframe: dataframe from processed gff3 file.

Value

```
event:
FC_HL:
FC_intensity:
FC_HL_FC_intensity:
p_adjusted:
velocity_ratio:
p_value:
feature_type:
gene:
locus_tag:
strand: The bin/probe specific strand
TU: The overarching transcription unit
segment_1:
segment_2:
event_position:
event_duration:
gap_fragments:
features:
```

```
if(!require(SummarizedExperiment)){
suppressPackageStartupMessages(library(SummarizedExperiment))
}
data(stats_minimal)
dataframe_summary_events(data = stats_minimal,
data_annotation = metadata(stats_minimal)$annot[[1]])
```

dataframe_summary_events_HL_int

dataframe_summary_events_HL_int creates one table with all events between the segments. The dataframe_summary_events_HL_int creates one table with the following columns: event, features, p_value, event_position, event_duration, position, region, gene, locus_tag, strand, TU, segment_1, segment_2, length, FC_HL, FC_intensity, FC_HL/FC_intensity. The columns are:

- 1. event: event type, pausing site, iTSS_I, iTSS_II, Termination, HL_event, Int_event, HL_Int_event and velocity_change.
- 2. FC HL: fold change between 2 half-life fragments
- 3. FC_intensity: fold change between 2 intensity fragments
- 4. FC_HL/FC_intensity: ratio of fold change between 2 half-life fragments and fold change between 2 intensity fragments.
- 5. p_value: depending on the event, t-test, manova test p_value is assigned.
- 6. feature_type: indicated on the output data frame as region, are the feature type covering the event.
- 7. gene: gene covering the event.
- 8. locus_tag: locus_tag covering the event.
- 9. strand: +/- indicated in case of stranded data.
- 10. TU: TU covering the event.
- 11. segment_1: the first segment of the event, includes the segment, TU, delay fragment in case of ps or iTSS_I. The rest of the events include HL fragment and could be extended intensity fragment.
- 12. segment_2: same description as segment_1 but is the second fragment of the event.
- 13. event_position: the position of event, calculated dividing the last position of the first fragment and the first position of the next fragment on 2.
- 14. event_duration: the difference (min) between 2 delay fragment when ps or iTSS_I happen.
- 15. gap_fragments: length in position (nt), calculated by the difference between the last position of the first fragment and the first position of the second fragment.
- 16. features: number of segment involved on the event.

Description

dataframe_summary_events_HL_int creates one table with all events between the segments. The dataframe_summary_events_HL_int creates one table with the following columns: event, features,

p_value, event_position, event_duration, position, region, gene, locus_tag, strand, TU, segment_1, segment_2, length, FC_HL, FC_intensity, FC_HL/FC_intensity. The columns are:

- 1. event: event type, pausing site, iTSS_I, iTSS_II, Termination, HL_event, Int_event, HL_Int_event and velocity_change.
- 2. FC_HL: fold change between 2 half-life fragments
- 3. FC_intensity: fold change between 2 intensity fragments
- 4. FC_HL/FC_intensity: ratio of fold change between 2 half-life fragments and fold change between 2 intensity fragments.
- 5. p_value: depending on the event, t-test, manova test p_value is assigned.
- feature_type: indicated on the output data frame as region, are the feature type covering the event.
- 7. gene: gene covering the event.
- 8. locus_tag: locus_tag covering the event.
- 9. strand: +/- indicated in case of stranded data.
- 10. TU: TU covering the event.
- 11. segment_1: the first segment of the event, includes the segment, TU, delay fragment in case of ps or iTSS_I. The rest of the events include HL fragment and could be extended intensity fragment.
- 12. segment_2: same description as segment_1 but is the second fragment of the event.
- 13. event_position: the position of event, calculated dividing the last position of the first fragment and the first position of the next fragment on 2.
- 14. event_duration: the difference (min) between 2 delay fragment when ps or iTSS_I happen.
- 15. gap_fragments: length in position (nt), calculated by the difference between the last position of the first fragment and the first position of the second fragment.
- 16. features: number of segment involved on the event.

Usage

```
dataframe_summary_events_HL_int(data, data_annotation)
```

Arguments

data SummarizedExperiment: the input data frame with correct format.

data_annotation

dataframe: dataframe from processed gff3 file.

Value

event:
p_value:
p_adjusted:
FC_HL:

```
FC_intensity:

FC_HL_adapted: Fold change of half-life/ fold change of intensity, position of the half-life fragment is adapted to intensity fragment

FC_HL_FC_intensity: Fold change of half-life/ fold change of intensity

event_position:

feature_type:

gene:

locus_tag:

strand: The bin/probe specific strand

TU: The overarching transcription unit

segment_1:

segment_2:

event_duration:

gap_fragments:

features:
```

```
if(!require(SummarizedExperiment)){
suppressPackageStartupMessages(library(SummarizedExperiment))
}
data(stats_minimal)
dataframe_summary_events_HL_int(data = stats_minimal,
data_annotation = metadata(stats_minimal)$annot[[1]])
```

dataframe_summary_events_ps_itss

dataframe_summary_events_ps_itss creates one table with all events between the segments. The dataframe_summary_events_ps_itss creates one table with the following columns: event, features, p_value, event_position, event_duration, position, region, gene, locus_tag, strand, TU, segment_1, segment_2, length, velocity_ratio. The columns are:

- 1. event: event type, pausing site, iTSS_I, iTSS_II, Termination, HL_event, Int_event, HL_Int_event and velocity_change.
- 2. velocity_ratio: ratio between any two fragment where the event happen.
- 3. p_value: depending on the event, t-test, manova test p_value is assigned.
- 4. feature_type: indicated on the output data frame as region, are the feature type covering the event.
- 5. gene: gene covering the event.
- 6. locus_tag: locus_tag covering the event.
- 7. strand: +/- indicated in case of stranded data.
- 8. TU: TU covering the event.
- 9. segment_1: the first segment of the event, includes the segment, TU, delay fragment in case of ps or iTSS_I.
- 10. segment_2: same description as segment_1 but is the second fragment of the event.
- 11. event_position: the position of event, calculated dividing the last position of the first fragment and the first position of the next fragment on 2.
- 12. event_duration: the difference (min) between 2 delay fragment when ps or iTSS_I happen.
- 13. gap_fragments: length in position (nt), calculated by the difference between the last position of the first fragment and the first position of the second fragment.
- 14. features: number of segment involved on the event.

Description

dataframe_summary_events_ps_itss creates one table with all events between the segments. The dataframe_summary_events_ps_itss creates one table with the following columns: event, features, p_value, event_position, event_duration, position, region, gene, locus_tag, strand, TU, segment_1, segment_2, length, velocity_ratio. The columns are:

1. event: event type, pausing site, iTSS_I, iTSS_II, Termination, HL_event, Int_event, HL_Int_event and velocity_change.

- 2. velocity_ratio: ratio between any two fragment where the event happen.
- 3. p_value: depending on the event, t-test, manova test p_value is assigned.
- 4. feature_type: indicated on the output data frame as region, are the feature type covering the event.
- 5. gene: gene covering the event.
- 6. locus_tag: locus_tag covering the event.
- 7. strand: +/- indicated in case of stranded data.
- 8. TU: TU covering the event.
- 9. segment_1: the first segment of the event, includes the segment, TU, delay fragment in case of ps or iTSS_I.
- 10. segment_2: same description as segment_1 but is the second fragment of the event.
- 11. event_position: the position of event, calculated dividing the last position of the first fragment and the first position of the next fragment on 2.
- 12. event_duration: the difference (min) between 2 delay fragment when ps or iTSS_I happen.
- 13. gap_fragments: length in position (nt), calculated by the difference between the last position of the first fragment and the first position of the second fragment.
- 14. features: number of segment involved on the event.

Usage

```
dataframe_summary_events_ps_itss(data, data_annotation)
```

Arguments

```
data SummarizedExperiment: the input data frame with correct format.

data_annotation

dataframe: dataframe from processed gff3 file.
```

Value

```
event:
p_value:
p_adjusted:
event_position:
velocity_ratio:
FC_HL_adapted:
feature_type:
gene:
locus_tag:
strand: The bin/probe specific strand
TU: The overarching transcription unit
segment_1:
```

```
segment_2:

event_duration:

gap_fragments:

features:
```

```
data(stats_minimal)
if(!require(SummarizedExperiment)){
suppressPackageStartupMessages(library(SummarizedExperiment))
}
dataframe_summary_events_ps_itss(data = stats_minimal,
data_annotation = metadata(stats_minimal)$annot[[1]])
```

dataframe_summary_events_velocity

dataframe_summary_events_velocity creates one table with all events between the segments. The dataframe_summary_events_velocity creates one table with the following columns: event, features, p_value, event_position, event_duration, position, region, gene, locus_tag, strand, TU, segment_1, segment_2, length, velocity_ratio. The columns are:

- 1. event: event type, pausing site, iTSS_I, iTSS_II, Termination, HL_event, Int_event, HL_Int_event and velocity_change.
- 2. velocity_ratio: ratio between any two fragment where the event happen.
- 3. p_value: depending on the event, t-test, manova test p_value is assigned.
- 4. feature_type: indicated on the output data frame as region, are the feature type covering the event.
- 5. gene: gene covering the event.
- 6. locus_tag: locus_tag covering the event.
- 7. strand: +/- indicated in case of stranded data.
- 8. TU: TU covering the event.
- 9. segment_1: the first segment of the event, includes the segment, TU, delay fragment in case of ps or iTSS_I. The rest of the events include HL fragment and could be extended intensity fragment.
- 10. segment_2: same description as segment_1 but is the second fragment of the event.
- 11. event_position: the position of event, calculated dividing the last position of the first fragment and the first position of the next fragment on 2.
- 12. event_duration: the difference (min) between 2 delay fragment when ps or iTSS_I happen.
- 13. gap_fragments: length in position (nt), calculated by the difference between the last position of the first fragment and the first position of the second fragment.
- 14. features: number of segment involved on the event.

Description

dataframe_summary_events_velocity creates one table with all events between the segments. The dataframe_summary_events_velocity creates one table with the following columns: event, features, p_value, event_position, event_duration, position, region, gene, locus_tag, strand, TU, segment_1, segment_2, length, velocity_ratio. The columns are:

1. event: event type, pausing site, iTSS_I, iTSS_II, Termination, HL_event, Int_event, HL_Int_event and velocity_change.

- 2. velocity_ratio: ratio between any two fragment where the event happen.
- 3. p_value: depending on the event, t-test, manova test p_value is assigned.
- 4. feature_type: indicated on the output data frame as region, are the feature type covering the event.
- 5. gene: gene covering the event.
- 6. locus_tag: locus_tag covering the event.
- 7. strand: +/- indicated in case of stranded data.
- 8. TU: TU covering the event.
- segment_1: the first segment of the event, includes the segment, TU, delay fragment in case
 of ps or iTSS_I. The rest of the events include HL fragment and could be extended intensity
 fragment.
- 10. segment_2: same description as segment_1 but is the second fragment of the event.
- 11. event_position: the position of event, calculated dividing the last position of the first fragment and the first position of the next fragment on 2.
- 12. event_duration: the difference (min) between 2 delay fragment when ps or iTSS_I happen.
- 13. gap_fragments: length in position (nt), calculated by the difference between the last position of the first fragment and the first position of the second fragment.
- 14. features: number of segment involved on the event.

Usage

```
dataframe_summary_events_velocity(data, data_annotation)
```

Arguments

data SummarizedExperiment: the input data frame with correct format.

data_annotation

dataframe: dataframe from processed gff3 file.

Value

event:
p_value:
p_adjusted:
event_position:
velocity_ratio:
feature_type:
gene:
locus_tag:
strand: The bin/probe specific strand
TU: The overarching transcription unit
segment_1:

```
segment_2:
event_duration:
gap_fragments:
features:
```

Examples

```
if(!require(SummarizedExperiment)){
suppressPackageStartupMessages(library(SummarizedExperiment))
}
data(stats_minimal)
dataframe_summary_events_velocity(data = stats_minimal,
data_annotation = metadata(stats_minimal)$annot[[1]])
```

dataframe_summary_TI

dataframe_summary_TI creates one table with all TI fragments, p_value and the coordinates. The dataframe_summary creates one table with the following columns: event, TI_fragment, TI_factor, TI_fragments_TU, p_value, feature_type, gene, locus_tag, strand, TU, features, event_position, position_1 and position_2. The columns are:

- 1. event: event type, transcription interference.
- 2. TI_fragment: Transcription interference fragment.
- 3. TI_factor: Transcription interference factor.
- 4. TI_fragments_TU: Transcription interference fragments included on the TU.
- 5. p_value: TI p_value between two successive fragments is assigned.
- 6. feature_type: indicated on the output data frame as region, are the feature type covering the TI.
- 7. gene: the genes covering the TI.
- 8. locus_tag: the locus_tags covering the TI.
- 9. strand: +/- indicated in case of stranded data.
- 10. TU: TU covering the TI.
- 11. features: number of segment TI involved on a TU.
- 12. event_position: position between two TI fragments.
- 13. position_1: the first position of TI fragment, if 2 fragments, first position is from the first fragment.
- 14. position_2: the last position of TI fragment, if 2 fragments, last position is from the second fragment.

Description

dataframe_summary_TI creates one table with all TI fragments, p_value and the coordinates. The dataframe_summary creates one table with the following columns: event, TI_fragment, TI_factor, TI_fragments_TU, p_value, feature_type, gene, locus_tag, strand, TU, features, event_position, position_1 and position_2. The columns are:

- 1. event: event type, transcription interference.
- 2. TI_fragment: Transcription interference fragment.
- 3. TI_factor: Transcription interference factor.
- 4. TI_fragments_TU: Transcription interference fragments included on the TU.
- 5. p_value: TI p_value between two successive fragments is assigned.
- 6. feature_type: indicated on the output data frame as region, are the feature type covering the TI.
- 7. gene: the genes covering the TI.
- 8. locus_tag: the locus_tags covering the TI.
- 9. strand: +/- indicated in case of stranded data.
- 10. TU: TU covering the TI.
- 11. features: number of segment TI involved on a TU.
- 12. event_position : position between two TI fragments.
- 13. position_1: the first position of TI fragment, if 2 fragments, first position is from the first fragment.
- 14. position_2: the last position of TI fragment, if 2 fragments, last position is from the second fragment.

Usage

```
dataframe_summary_TI(data, input)
```

Arguments

data SummarizedExperiment: the input data frame with correct format.

input dataframe: dataframe from event_dataframe function.

Value

WIP

```
data(stats_minimal)
data(res_minimal)
dataframe_summary_TI(data = stats_minimal, input = res_minimal)
```

event_dataframe 27

event_dataframe

event_dataframe: creates a dataframe only with events for segments and genes. The function used are: position_function: adds the specific position of ps or iTSS event annotation_function_event: adds the events to the annotated genes. gff3 file has to be supplied. Strand is indicated in case of stranded data The event_dataframe selects columns with statistical features. ID, position, strand and TU columns are required. Two major dataframe are generated, df gathers t-test and Manova test and df1 gathers ps and ITSS with the corresponding features. df selects only unique intensity fragments since they are the lowest on the hierarchy. One new column is added to df, "synthesis_ratio_event", it corresponds to the FC-HL/FC-intensity and assignment of an event to the synthesis ratio respectively. df adds a new column to indicate the position of the ps or ITSS event.

Description

event_dataframe: creates a dataframe only with events for segments and genes. The function used are: position_function: adds the specific position of ps or iTSS event annotation_function_event: adds the events to the annotated genes. gff3 file has to be supplied. Strand is indicated in case of stranded data The event_dataframe selects columns with statistical features. ID, position, strand and TU columns are required. Two major dataframe are generated, df gathers t-test and Manova test and df1 gathers ps and ITSS with the corresponding features. df selects only unique intensity fragments since they are the lowest on the hierarchy. One new column is added to df, "synthesis_ratio_event", it corresponds to the FC-HL/FC-intensity and assignment of an event to the synthesis ratio respectively. df adds a new column to indicate the position of the ps or ITSS event.

Usage

```
event_dataframe(data, data_annotation)
```

Arguments

data $$\operatorname{dataframe}$$ the probe based data frame. data_annotation

dataframe: the coordinates are extracted from gff3

Value

WIP

```
if(!require(SummarizedExperiment)){
suppressPackageStartupMessages(library(SummarizedExperiment))
}
data(stats_minimal)
event_dataframe(data = stats_minimal,
```

```
data_annotation = metadata(stats_minimal)$annot[[1]])
```

example_input_e_coli

An example SummarizedExperiment from E. coli An example SummarizedExperiment from RNA-seq containing information about the intensities at all time points (assay). Seqnames, IRanges and strand columns (rowRanges) and colData with time point series and replicates.

Description

An example SummarizedExperiment from E. coli An example SummarizedExperiment from RNA-seq containing information about the intensities at all time points (assay). Seqnames, IRanges and strand columns (rowRanges)and colData with time point series and replicates.

Usage

```
data(example_input_e_coli)
```

Format

A assay:

0: relative intensities at 0 min

1: relative intensities at 1 min

10: relative intensities at 10 min

15: relative intensities at 15 min

2: relative intensities at 2 min

20: relative intensities at 20 min

3: relative intensities at 3 min

4: relative intensities at 4 min

5: relative intensities at 5 min

6: relative intensities at 6 min

8: relative intensities at 8 min

Source

```
https://github.com/CyanolabFreiburg/rifi
```

example_input_minimal An artificial example SummarizedExperiment An example SummarizedExperiment containing information about the intensities at all time points (assay). Segnames, IRanges and strand columns (rowRanges) and colData with time point series and replicates.

Description

An artificial example SummarizedExperiment An example SummarizedExperiment containing information about the intensities at all time points (assay). Seqnames, IRanges and strand columns (rowRanges) and colData with time point series and replicates.

Usage

```
data(example_input_minimal)
```

Format

An object of class RangedSummarizedExperiment with 4 rows and 33 columns.

Source

https://github.com/CyanolabFreiburg/rifi

example_input_synechocystis_6803

An example input data frame from Synechocystis PCC 6803 A SummarizedExperiment from microarrays data containing information about the intensities at all time points (assay), Segnames, IRanges and strand columns (rowRanges) and colData with time point series and averaged replicates.

Description

An example input data frame from Synechocystis PCC 6803 A SummarizedExperiment from microarrays data containing information about the intensities at all time points (assay), Seqnames, IRanges and strand columns (rowRanges) and colData with time point series and averaged replicates.

Usage

```
data(example_input_synechocystis_6803)
```

30 finding_PDD

Format

Assay with 3000 rows and 10 variables:

0: relative intensities at 0 min

2: relative intensities at 2 min

4: relative intensities at 4 min

8: relative intensities at 8 min

16: relative intensities at 16 min

32: relative intensities at 32 min

64: relative intensities at 64 min

Source

https://github.com/CyanolabFreiburg/rifi

finding_PDD	finding_PDD: flags potential candidates for post transcription decay.
	'finding_PDD' uses 'score_fun_linear_PDD' to make groups by the
	difference to the slope. Then the slope is checked for steepness to de-
	cide for PDD. 'PDD' is added to the 'flag' column. Post transcription
	decay is characterized by a strong decrease of intensity by position.
	The rowRanges need to contain at least 'ID', 'intensity', 'position'

Description

finding_PDD: flags potential candidates for post transcription decay. 'finding_PDD' uses 'score_fun_linear_PDD' to make groups by the difference to the slope. Then the slope is checked for steepness to decide for PDD. 'PDD' is added to the 'flag' column. Post transcription decay is characterized by a strong decrease of intensity by position. The rowRanges need to contain at least 'ID', 'intensity', 'position' and 'position_segment'!

Usage

```
finding_PDD(inp, cores = 1, pen = 2, pen_out = 1, thrsh = 0.001)
```

and 'position_segment'!

Arguments

inp	SummarizedExperiment: the input.
cores	integer: the number of assigned cores for the task
pen	numeric: an internal parameter for the dynamic programming. Higher values result in fewer fragments. Advised to be kept at 2. Default is 2.
pen_out	numeric: an internal parameter for the dynamic programming. Higher values result in fewer possible outliers. Advised to be kept at 1. Default is 1.
thrsh	numeric: an internal parameter that allows fragments with slopes steeper than the thrsh to be flagged with ' <i>PDD</i> '. Higher values result in fewer candidates. Advised to be kept at 0.001. Default is 0.001.

finding_TI 31

Value

the SummarizedExperiment object: with "PDD" added to the flag column.

Examples

```
data(preprocess_minimal)
finding_PDD(inp = preprocess_minimal, cores = 2, pen = 2,
pen_out = 1, thrsh = 0.001)
```

finding_TI

finding_TI: flags potential candidates for transcription interference. 'finding_TI' uses 'score_fun_ave' to make groups by the mean of "probe_TI". "TI" is added to the "flag" column. TI is characterized by relative intensities at time points later than "0". The rowRanges need to contain at least "ID", "probe_TI" and "position_segment"!

Description

finding_TI: flags potential candidates for transcription interference. 'finding_TI' uses 'score_fun_ave' to make groups by the mean of "probe_TI". "TI" is added to the "flag" column. TI is characterized by relative intensities at time points later than "0". The rowRanges need to contain at least "ID", "probe_TI" and "position_segment"!

Usage

```
finding_TI(inp, cores, pen = 10, thrsh = 0.5, add = 1000)
```

Arguments

inp	SummarizedExperiment: the input.
cores	integer: the number of assigned cores for the task
pen	numeric: an internal parameter for the dynamic programming. Higher values result in fewer fragments. Advised to be kept at 10. Default is 10.
thrsh	numeric: an internal parameter that allows fragments with a certain amount of IDs with higher relative intensities at time points later than "0" to be flagged as " TI ". Higher values result in fewer candidates0.5 is 25 %, 0 is 50%, 0.5 is 75%. Advised to be kept at 0.5. Default is 0.5.
add	integer: range of nucleotides before and after a potential TI event wherein IDs are fitted with the TI fit.

Value

the SummarizedExperiment object: with "TI" added to the flag column.

fit_e_coli

Examples

```
data(preprocess_minimal)
finding_TI(inp = preprocess_minimal, cores = 2, pen = 10, thrsh = 0.5,
add = 1000)
```

fit_e_coli

The result of rifi_fit for E.coli example data A SummarizedExperiment containing the output from rifi_fit as an extension of rowRanges and metadata.

Description

The result of rifi_fit for E.coli example data A SummarizedExperiment containing the output from rifi_fit as an extension of rowRanges and metadata.

Usage

```
data(fit_e_coli)
```

Format

Three data frames with 290 rows and 10 variables, 155 rows and 5 variables, and 135 rows and 9 variables are generated. The columns of the first data frame are added to the rowRanges and the rest are added as metadata.

inp: The SummarizedExperiment:

ID: The bin/probe specific ID

position: The bin/probe specific position **intensity:** The relative intensity at time point 0

probe_TI: An internal value to determine which fitting model is applied

flag: Information on which fitting model is applied **postion_segment:** The position based segment

delay: The delay value of the bin/probe **half_life:** The half-life of the bin/probe

TI_termination_factor: The termination factor of the bin/probe

fit_obj_STD: the fit object for the standard fit:

ID: The bin/probe specific ID

delay: The delay value of the bin/probe **half_life:** The half-life of the bin/probe

inty_S0: The relative intensity at time point 0

intyf: The background value of the fit

fit_obj_TI: the fit object for the TI fit:

delay: The delay value of the bin/probe

fit_minimal 33

ti_delay: The ti-delay value of the bin/probehalf_life: The half-life of the bin/probeti_value: The ti-value of the bin/probe

TI_termination_factor: The termination factor of the bin/probe

synthesis_rate: The synthesis rate of the bin/probe **TI_background:** The background value of the fit

position: The bin/probe specific position

ID: The bin/probe specific ID

Source

https://github.com/CyanolabFreiburg/rifi

fit_minimal

The artificial result of rifi_fit for artificial example data A Summa-rizedExperiment containing the output from rifi_fit.

Description

The artificial result of rifi_fit for artificial example data A SummarizedExperiment containing the output from rifi_fit.

Usage

```
data(fit_minimal)
```

Format

An object of class RangedSummarizedExperiment with 4 rows and 33 columns.

Source

https://github.com/CyanolabFreiburg/rifi

fit_synechocystis_6803

The result of rifi_fit for Synechocystis 6803 example data A Summa-rizedExperiment containing the output from rifi_fit as an extension of rowRanges and metadata.

Description

The result of rifi_fit for Synechocystis 6803 example data A SummarizedExperiment containing the output from rifi_fit as an extension of rowRanges and metadata.

Usage

```
data(fit_synechocystis_6803)
```

Format

Three data frames with 3000 rows and 10 variables, 2811 rows and 5 variables, and 189 rows and 9 variable are generated. The columns of the first data frame are added to the rowRanges and the rest are added as metadata.

inp: the SummarizedExperiment:

ID: The bin/probe specific ID

position: The bin/probe specific position **strand:** The bin/probe specific strand

intensity: The relative intensity at time point 0

probe_TI: An internal value to determine which fitting model is applied

flag: Information on which fitting model is applied **postion_segment:** The position based segment

delay: The delay value of the bin/probe **half_life:** The half-life of the bin/probe

TI_termination_factor: The termination factor of the bin/probe

fit_obj_STD: the fit object for the standard fit:

ID: The bin/probe specific ID

delay: The delay value of the bin/probe **half_life:** The half-life of the bin/probe **inty_S0:** The relative intensity at time point 0

intyf: The background value of the fit

fit_obj_TI: the fit object for the TI fit:

delay: The delay value of the bin/probeti_delay: The ti-delay value of the bin/probehalf_life: The half-life of the bin/probeti_value: The ti-value of the bin/probe

fold_change 35

TI_termination_factor: The termination factor of the bin/probe

synthesis_rate: The synthesis rate of the bin/probe **TI_background:** The background value of the fit

position: The bin/probe specific position

ID: The bin/probe specific ID

Source

https://github.com/CyanolabFreiburg/rifi

fold_change

fold_change: it sets a fold-change ratio between the neighboring fragments of Half-life (HL) and intensity. fold_change sets fold change on intensity and fold change HL fragments of two successive fragments. Two intensity fragments could belong to one HL fragment. This function sets first the borders using the position and applies the fold change ratio between the neighboring fragments of HL and those from intensity (intensity frgA/intensity frgB/half-life frgA/half-life frgB). All grepped fragments are from the same TU excluding outliers.

Description

The function used is: synthesis_r_Function: assigns events depending on the ratio between HL and intensity of two consecutive fragments. intensity(int) = synthesis rate(k)/decay(deg) (steady state), int1/int2 = k1/deg1*deg2/k2 int1 * (deg1/int2)*deg2 = k1/k2 => synthesis ratio. In case of synthesis ratio is: synthesis ratio > 1 -> New start synthesis ratio < 1 -> Termination

Usage

fold_change(inp)

Arguments

inp

SummarizedExperiment: the input data frame with correct format.

Value

the SummarizedExperiment with the columns regarding statistics:

ID: The bin/probe specific ID

position: The bin/probe specific position

intensity: The relative intensity at time point 0

half life: The half-life of the bin/probe

HL_fragment: The half-life fragment the bin belongs to

HL_mean_fragment: The mean half-life value of the respective half-life fragment

```
intensity_fragment: The intensity fragment the bin belongs to
intensity_mean_fragment: The mean intensity value of the respective intensity fragment
TU: The overarching transcription unit
pausing_site:
iTSS_I:
ps_ts_fragment:
event_ps_itss_p_value_Ttest:
p_value_slope:
delay_frg_slope:
velocity_ratio:
event_duration:
event_position:
FC_HL:
FC_fragment_HL:
p_value_HL:
FC_intensity:
FC_fragment_intensity:
p_value_intensity:
FC_HL_intensity:
FC_HL_intensity_fragment:
FC_HL_adapted:
```

Examples

```
data(stats_minimal)
fold_change(inp = stats_minimal)
```

Description

The result of rifi_fragmentation for E.coli example data A SummarizedExperiment containing the output from rifi_fragmentation as an extension of rowRanges

Usage

```
data(fragmentation_e_coli)
```

Format

rowRanges of the SummarizedExperiment with 290 rows and 22 variables:

ID: The bin/probe specific ID

position: The bin/probe specific position

intensity: The relative intensity at time point 0

probe_TI: An internal value to determine which fitting model is applied

flag: Information on which fitting model is applied position_segment: The position based segment

delay: The delay value of the bin/probe half life: The half-life of the bin/probe

TI_termination_factor: The termination factor of the bin/probe

delay_fragment: The delay fragment the bin belongs to

velocity_fragment: The velocity value of the respective delay fragment **intercept:** The vintercept of fit through the respective delay fragment **slope:** The slope of the fit through the respective delay fragment

HL_fragment: The half-life fragment the bin belongs to

HL_mean_fragment: The mean half-life value of the respective half-life fragment

intensity_fragment: The intensity fragment the bin belongs to

intensity mean fragment: The mean intensity value of the respective intensity fragment

TU: The overarching transcription unit

TI termination fragment: The TI fragment the bin belongs to

TI_mean_termination_factor: The mean termination factor of the respective TI fragment

seg_ID: The combined ID of the fragment

Source

https://github.com/CyanolabFreiburg/rifi

fragmentation_minimal The result of rifi_fragmentation for artificial example data A SummarizedExperiment containing the output from rifi_fragmentation as an extension of rowRanges and metadata.

Description

The result of rifi_fragmentation for artificial example data A SummarizedExperiment containing the output from rifi_fragmentation as an extension of rowRanges and metadata.

Usage

data(fragmentation_minimal)

Format

An object of class RangedSummarizedExperiment with 24 rows and 33 columns.

Source

https://github.com/CyanolabFreiburg/rifi

fragmentation_synechocystis_6803

The result of rifi_fragmentation for Synechocystis 6803 example data A SummarizedExperiment containing the output from rifi_fragmentation as an extension fo rowRanges

Description

The result of rifi_fragmentation for Synechocystis 6803 example data A SummarizedExperiment containing the output from rifi_fragmentation as an extension fo rowRanges

Usage

data(fragmentation_synechocystis_6803)

Format

rowRanges of the SummarizedExperiment:

ID: The bin/probe specific ID

position: The bin/probe specific position

intensity: The relative intensity at time point 0

probe_TI: An internal value to determine which fitting model is applied

flag: Information on which fitting model is appliedposition_segment: The position based segment

delay: The delay value of the bin/probe **half_life:** The half-life of the bin/probe

TI_termination_factor: The termination factor of the bin/probe

delay_fragment: The delay fragment the bin belongs to

velocity_fragment: The velocity value of the respective delay fragmentintercept: The vintercept of fit through the respective delay fragmentslope: The slope of the fit through the respective delay fragment

HL_fragment: The half-life fragment the bin belongs to

HL_mean_fragment: The mean half-life value of the respective half-life fragment

intensity_fragment: The intensity fragment the bin belongs to

fragment_delay 39

intensity_mean_fragment: The mean intensity value of the respective intensity fragment

TU: The overarching transcription unit

TI_termination_fragment: The TI fragment the bin belongs to

TI_mean_termination_factor: The mean termination factor of the respective TI fragment

seg_ID: The combined ID of the fragment

Source

https://github.com/CyanolabFreiburg/rifi

fragment_delay

fragment_delay: performs the delay fragmentation. fragment_delay makes delay_fragments based on position_segments and assigns all gathered information to the SummarizedExperiment object. The columns "delay_fragment", "velocity_fragment", "intercept" and "slope" are added. fragment_delay makes delay_fragments, assigns slopes, which are 1/velocity at the same time, and intercepts for the TU calculation. The function used is: score_fun_linear the input is the SummarizedExperiment object. pen is the penalty for new fragments in the dynamic programming, pen_out is the outlier penalty.

Description

fragment_delay: performs the delay fragmentation. fragment_delay makes delay_fragments based on position_segments and assigns all gathered information to the SummarizedExperiment object. The columns "delay_fragment", "velocity_fragment", "intercept" and "slope" are added. fragment_delay makes delay_fragments, assigns slopes, which are 1/velocity at the same time, and intercepts for the TU calculation. The function used is: score_fun_linear the input is the SummarizedExperiment object. pen is the penalty for new fragments in the dynamic programming, pen_out is the outlier penalty.

Usage

```
fragment_delay(inp, cores = 1, pen, pen_out)
```

Arguments

inp	SummarizedExperiment: the input data frame with correct format.
cores	cores: integer: the number of assigned cores for the task.
pen	numeric: an internal parameter for the dynamic programming. Higher values result in fewer fragments. Default is the auto generated value.
pen_out	numeric: an internal parameter for the dynamic programming. Higher values result in fewer allowed outliers. Default is the auto generated value.

40 fragment_HL

Value

the SummarizedExperiment object: with delay_fragment, velocity_fragment, intercept and slope added to the rowRanges.

Examples

```
data(fragmentation_minimal)
fragment_delay(inp = fragmentation_minimal, cores = 2, pen = 2, pen_out = 1)
```

fragment_HL

fragment_HL: performs the half_life fragmentation fragment_HL makes HL_fragments based on delay_fragments and assigns all gathered information to the SummarizedExperiment object. The columns "HL_fragment" and "HL_mean_fragment" are added. fragment_HL makes half-life_fragments and assigns the mean of each fragment. The function used is: .score_fun_ave. The input the SummarizedExperiment object. pen is the penalty for new fragments in the dynamic programming, pen_out is the outlier penalty.

Description

fragment_HL: performs the half_life fragmentation fragment_HL makes HL_fragments based on delay_fragments and assigns all gathered information to the SummarizedExperiment object. The columns "HL_fragment" and "HL_mean_fragment" are added. fragment_HL makes half-life_fragments and assigns the mean of each fragment. The function used is: .score_fun_ave. The input the SummarizedExperiment object. pen is the penalty for new fragments in the dynamic programming, pen_out is the outlier penalty.

Usage

```
fragment_HL(inp, cores = 1, pen, pen_out)
```

Arguments

inp	SummarizedExperiment: the input data frame with correct format.
cores	integer: the number of assigned cores for the task.
pen	numeric: an internal parameter for the dynamic programming. Higher values result in fewer fragments. Default is the auto generated value.
pen_out	numeric: an internal parameter for the dynamic programming. Higher values result in fewer allowed outliers. Default is the auto generated value.

Value

the SummarizedExperiment object: with HL_fragment and HL_mean_fragment added to the rowRanges.

fragment_inty 41

Examples

```
data(fragmentation_minimal)
fragment_HL(inp = fragmentation_minimal, cores = 2, pen = 2, pen_out = 1)
```

fragment_inty

fragment_inty: performs the intensity fragmentation fragment_inty makes intensity_fragments based on HL_fragments and assigns all gathered information to the SummarizedExperiment object. The columns "intensity_fragment" and "intensity_mean_fragment" are added. fragment_inty makes intensity_fragments and assigns the mean of each fragment. The function used is: .score_fun_ave. The input is the the SummarizedExperiment object. pen is the penalty for new fragments in the dynamic programming, pen_out is the outlier penalty.

Description

fragment_inty: performs the intensity fragmentation fragment_inty makes intensity_fragments based on HL_fragments and assigns all gathered information to the SummarizedExperiment object. The columns "intensity_fragment" and "intensity_mean_fragment" are added. fragment_inty makes intensity_fragments and assigns the mean of each fragment. The function used is: .score_fun_ave. The input is the the SummarizedExperiment object. pen is the penalty for new fragments in the dynamic programming, pen_out is the outlier penalty.

Usage

```
fragment_inty(inp, cores = 1, pen, pen_out)
```

Arguments

inp	SummarizedExperiment: the input data frame with correct format.
cores	cores: integer: the number of assigned cores for the task.
pen	numeric: an internal parameter for the dynamic programming. Higher values result in fewer fragments. Default is the auto generated value.
pen_out	numeric: an internal parameter for the dynamic programming. Higher values result in fewer allowed outliers. Default is the auto generated value.

Value

the SummarizedExperiment object: with intensity_fragment and intensity_mean_fragment added to the rowRanges.

```
data(fragmentation_minimal)
fragment_inty(inp = fragmentation_minimal, cores = 2, pen = 2, pen_out = 1)
```

42 fragment_TI

fragment_TI	fragment_TI: performs the TI fragmentation. fragment_TI makes TI_fragments based on TUs and assigns all gathered infor-
	mation to the SummarizedExperiment object. The columns "TI_termination_fragment" and the TI_mean_termination_factor are
	added. The function used is: .score_fun_ave. The input is the Sum-marizedExperiment object. pen is the penalty for new fragments in the
	dynamic programming, pen_out is the outlier penalty.

Description

fragment_TI: performs the TI fragmentation. fragment_TI makes TI_fragments based on TUs and assigns all gathered information to the SummarizedExperiment object. The columns "TI_termination_fragment" and the TI_mean_termination_factor are added. The function used is: .score_fun_ave. The input is the SummarizedExperiment object. pen is the penalty for new fragments in the dynamic programming, pen_out is the outlier penalty.

Usage

```
fragment_TI(inp, cores = 1, pen, pen_out)
```

Arguments

inp	SummarizedExperiment: the input data frame with correct format.
cores	cores: integer: the number of assigned cores for the task.
pen	numeric: an internal parameter for the dynamic programming. Higher values result in fewer fragments. Default is the auto generated value.
pen_out	numeric: an internal parameter for the dynamic programming. Higher values result in fewer allowed outliers. Default is the auto generated value.

Value

the SummarizedExperiment object: with TI_termination_fragment and TI_termination_mean_fragment added to the rowRanges.

```
data(fragmentation_minimal)
fragment_TI(inp = fragmentation_minimal, cores = 2, pen = 2, pen_out = 1)
```

gff3_preprocess 43

gff3_preprocess

gff3_preprocess: process gff3 file from database for multiple usage. gff3_preprocess processes the gff3 file extracting gene names and locus_tag from all coding regions (CDS), UTRs/ncRNA/asRNA are also extracted if available. The resulting dataframe contains region, positions, strand, gene and locus_tag.

Description

gff3_preprocess: process gff3 file from database for multiple usage. gff3_preprocess processes the gff3 file extracting gene names and locus_tag from all coding regions (CDS), UTRs/ncRNA/asRNA are also extracted if available. The resulting dataframe contains region, positions, strand, gene and locus_tag.

Usage

```
gff3_preprocess(path)
```

Arguments

path

path: path to the directory containing the gff3 file.

Value

A list with 2 items:

data annotation: region: the region from the gff file

start: the start of the annotationend: the end of the annotationstrand: the strand of the annotationgene: the annotated gene namelocus_tag: the annotated locus tag

genome length: a numeric vector containing the length of the genome

```
gff3_preprocess(
path = gzfile(system.file("extdata", "gff_e_coli.gff3.gz", package = "rifi"))
)
```

44 make_df

make_df

make_df: adds important columns to the SummarizedExperiment object. 'make_df' adds to the SummarizedExperiment object with the columns: "intensity", "probe_TI" and "flag". The replicates are collapsed into their respective means. "intensity" is the mean intensity from time point 0. "probe_TI" is a value needed for the distribution for the different fitting models. "flag" contains information or the distribution for the different fitting models. Here, probes that don't reach the background level expression are flagged as "ABG" ("above background"). This is only needed for microarray data and is controlled by the bg parameter. The default for bg = 0, resulting in all probes to be above background (0 is advised for RNAseq data). Probes where all replicates were filtered in the optional filtration step can be fully removed by rm_FLT = TRUE! If you wish to keep all information in the assay set to FALSE!

Description

make_df: adds important columns to the SummarizedExperiment object. 'make_df' adds to the SummarizedExperiment object with the columns: "intensity", "probe_TI" and "flag". The replicates are collapsed into their respective means. "intensity" is the mean intensity from time point 0. "probe_TI" is a value needed for the distribution for the different fitting models. "flag" contains information or the distribution for the different fitting models. Here, probes that don't reach the background level expression are flagged as "ABG" ("above background"). This is only needed for microarray data and is controlled by the bg parameter. The default for bg = 0, resulting in all probes to be above background (0 is advised for RNAseq data). Probes where all replicates were filtered in the optional filtration step can be fully removed by rm_FLT = TRUE! If you wish to keep all information in the assay set to FALSE!

Usage

```
make_df(inp, cores = 1, bg = 0, rm_FLT = TRUE)
```

Arguments

inp	SummarizedExperiment: the (checked) input.
cores	integer: the number of assigned cores for the task.
bg	numeric: threshold over which the last timepoint has to be fitted with the above background mode.
rm_FLT	logical: remove IDs where all replicates are marked as filtered. Default is FALSE.

Value

the SummarizedExperiment object: with intensity, probe_TI and flag added to the rowRanges.

make_pen 45

Examples

```
data(preprocess_minimal)
make_df(inp = preprocess_minimal, cores = 2, bg = 0, rm_FLT = TRUE)
```

make_pen

make_pen: automatically assigns a penalties. 'make_pen' calls one of four available penalty functions to automatically assign penalties for the dynamic programming. The four functions to be called are:

- 1. fragment_delay_pen
- 2. fragment_HL_pen
- 3. fragment_inty_pen
- 4. fragment_TI_pen. These functions return the amount of statistically correct and statistically wrong splits at a specific pair of penalties. 'make_pen' iterates over many penalty pairs and picks the most suitable pair based on the difference between wrong and correct splits. The sample size, penalty range and resolution as well as the number of cycles can be customized. The primary start parameters create a matrix with n = rez_pen rows and n = rez_pen_out columns with values between sta_pen/sta_pen_out and end_pen/end_pen_out. The best penalty pair is picked. If dept is bigger than 1 the same process is repeated with a new matrix of the same size based on the result of the previous cycle. Only position segments with length within the sample size range are considered for the penalties to increase run time. Returns a penalty object (list of 4 objects) the first being the logbook.

Description

make_pen: automatically assigns a penalties. 'make_pen' calls one of four available penalty functions to automatically assign penalties for the dynamic programming. The four functions to be called are:

- 1. fragment_delay_pen
- 2. fragment_HL_pen
- 3. fragment_inty_pen
- 4. fragment_TI_pen. These functions return the amount of statistically correct and statistically wrong splits at a specific pair of penalties. 'make_pen' iterates over many penalty pairs and picks the most suitable pair based on the difference between wrong and correct splits. The sample size, penalty range and resolution as well as the number of cycles can be customized. The primary start parameters create a matrix with n = rez_pen rows and n = rez_pen_out columns with values between sta_pen/sta_pen_out and end_pen/end_pen_out. The best penalty pair is picked. If dept is bigger than 1 the same process is repeated with a new matrix of the same size based on the result of the previous cycle. Only position segments with length within the sample size range are considered for the penalties to increase run time. Returns a penalty object (list of 4 objects) the first being the logbook.

46 make_pen

Usage

```
make_pen(
   inp,
   FUN,
   cores = 1,
   logs,
   dpt = 1,
   smpl_min = 10,
   smpl_max = 100,
   sta_pen = 0.5,
   end_pen = 4.5,
   rez_pen = 9,
   sta_pen_out = 0.5,
   end_pen_out = 3.5,
   rez_pen_out = 7)
```

Arguments

inp	SummarizedExperiment: the input data frame with correct format.
FUN	function: one of the four bottom level functions (see details)
cores	integer: the number of assigned cores for the task
logs	numeric vector: the logbook vector.
dpt	integer: the number of times a full iteration cycle is repeated with a more narrow range based on the previous cycle. Default is 2.
smpl_min	integer: the smaller end of the sampling size. Default is 10.
smpl_max	integer: the larger end of the sampling size. Default is 100.
sta_pen	numeric: the lower starting penalty. Default is 0.5.
end_pen	numeric: the higher starting penalty. Default is 4.5.
rez_pen	numeric: the number of penalties iterated within the penalty range. Default is 9.
sta_pen_out	numeric: the lower starting outlier penalty. Default is 0.5.
end_pen_out	numeric: the higher starting outlier penalty. Default is 3.5.
rez_pen_out	numeric: the number of outlier penalties iterated within the outlier penalty range. Default is 7.

Value

A list with 4 items:

logbook: The logbook vector containing all penalty information **penalties:** a vetor with the respective penalty and outlier penalty

correct: a matrix of the correct splitswrong: a matrix of the incorrect splits

nls2_fit 47

Examples

```
data(fit_minimal)
make_pen(
  inp = fit_minimal, FUN = rifi:::fragment_HL_pen, cores = 2,
  logs = as.numeric(rep(NA, 8)), dpt = 1, smpl_min = 10, smpl_max = 50,
  sta_pen = 0.5, end_pen = 4.5, rez_pen = 9, sta_pen_out = 0.5,
  end_pen_out = 3.5, rez_pen_out = 7
)
```

nls2_fit

nls2_fit: estimates decay for each probe or bin. nls2_fit uses nls2 function to fit a probe or bin using intensities of the time series data from different time point. nls2 uses different starting values through expand grid and selects the best fit. Different filters could be applied prior fitting to the model. To apply nls2_fit function, prior filtration could applied.

- 1. generic_filter_BG: filter probes with intensities below back-ground using threshold. Those probes are filtered.
- 2. filtration_below_backg: additional functions exclusive to microarrays could be applied. Its very strict to the background (not recommended in usual case).
- 3. filtration_above_backg: selects probes with a very high intensity and above the background (recommended for special transcripts). Probes are flagged with "ABG". Those transcripts are usually related to a specific function in bacteria. This filter selects all probes with the same ID, the mean is applied, the last time point is selected and compared to the threshold.

Description

the model used estimates the delay, decay, intensity of the first time point (synthesis rate/decay) and the background. The coefficients are gathered in vectors with the corresponding IDs. Absence of the fit or a very bad fit are assigned with NA. In case of probes with very high intensities and above the background, the model used makes abstinence of background coefficient. The output of all coefficients is saved in the metadata. The fits are plotted using the function_plot_fit.r through rifi_fit.

Usage

```
nls2_fit(
  inp,
  cores = 1,
  decay = seq(0.08, 0.11, 0.02),
  delay = seq(0, 10, 0.1),
  k = seq(0.1, 1, 0.2),
```

48 penalties_e_coli

```
bg = 0.2
)
```

Arguments

inp	SummarizedExperiment: the input with correct format.
cores	integer: the number of assigned cores for the task.
decay	numeric vector: A sequence of starting values for the decay. Default is seq $(.08, 0.11, by=.02)$
delay	numeric vector: A sequence of starting values for the delay. Default is $seq(0,10,by=.1)$
k	numeric vector: A sequence of starting values for the synthesis rate. Default is $seq(0.1,1,0.2)$
bg	numeric vector: A sequence of starting values. Default is 0.2.

Value

the SummarizedExperiment object: with delay and decay added to the rowRanges. The full fit data is saved in the metadata as "fit_STD".

Examples

```
data(preprocess_minimal)
nls2_fit(inp = preprocess_minimal, cores = 2)
```

penalties_e_coli	The result of rifi_penalties for E.coli example data. A SummarizedEx-
	periment containing the output from rifi_penalties including the log-
	book and the four penalty objects as metadata.

Description

The result of rifi_penalties for E.coli example data. A SummarizedExperiment containing the output from rifi_penalties including the logbook and the four penalty objects as metadata.

Usage

```
data(penalties_e_coli)
```

penalties_minimal 49

Format

A list with 5 items:

logbook: The logbook vector containing all penalty information

pen_obj_delay: A list with 4 items:

logbook: The logbook vector containing all penalty information

delay_penalties: a vetor with the delay penalty and delay outlier penalty

correct: a matrix of the correct splits **wrong:** a matrix of the incorrect splits

pen_obj_HL: A list with 4 items:

logbook: The logbook vector containing all penalty information

HL_penalties: a vetor with the half-life penalty and half-life outlier penalty

correct: a matrix of the correct splits **wrong:** a matrix of the incorrect splits

pen_obj_inty: A list with 4 items:

logbook: The logbook vector containing all penalty information

inty_penalties: a vetor with the intensity penalty and intensity outlier penalty

correct: a matrix of the correct splits **wrong:** a matrix of the incorrect splits

pen_obj_TI: A list with 4 items:

logbook: The logbook vector containing all penalty information **TI_penalties:** a vetor with the TI penalty and TI outlier penalty

correct: a matrix of the correct splits **wrong:** a matrix of the incorrect splits

Source

https://github.com/CyanolabFreiburg/rifi

penalties_minimal

The result of rifi_penalties for artificial example data A Summarized-Experiment containing the output from rifi_penalties including the logbook and the four penalty objects as metadata.

Description

The result of rifi_penalties for artificial example data A SummarizedExperiment containing the output from rifi_penalties including the logbook and the four penalty objects as metadata.

Usage

data(penalties_minimal)

Format

An object of class RangedSummarizedExperiment with 24 rows and 33 columns.

Source

https://github.com/CyanolabFreiburg/rifi

penalties_synechocystis_6803

The result of rifi_penalties for Synechocystis 6803 example data. A SummarizedExperiment containing the output from rifi_penalties including the logbook and the four penalty objects as metadata.

Description

The result of rifi_penalties for Synechocystis 6803 example data. A SummarizedExperiment containing the output from rifi_penalties including the logbook and the four penalty objects as metadata.

Usage

```
data(penalties_synechocystis_6803)
```

Format

A list with 5 items:

logbook: The logbook vector containing all penalty information

pen_obj_delay: A list with 4 items:

logbook: The logbook vector containing all penalty information

delay_penalties: a vetor with the delay penalty and delay outlier penalty

correct: a matrix of the correct splits **wrong:** a matrix of the incorrect splits

pen_obj_HL: A list with 4 items:

logbook: The logbook vector containing all penalty information

HL_penalties: a vetor with the half-life penalty and half-life outlier penalty

correct: a matrix of the correct splits **wrong:** a matrix of the incorrect splits

pen_obj_inty: A list with 4 items:

logbook: The logbook vector containing all penalty information

inty_penalties: a vetor with the intensity penalty and intensity outlier penalty

correct: a matrix of the correct splits **wrong:** a matrix of the incorrect splits

pen_obj_TI: A list with 4 items:

predict_ps_itss 51

logbook: The logbook vector containing all penalty information **TI_penalties:** a vetor with the TI penalty and TI outlier penalty

correct: a matrix of the correct splits **wrong:** a matrix of the incorrect splits

Source

https://github.com/CyanolabFreiburg/rifi

predict_ps_itss

predict_ps_itss: predicts pausing sites (ps) and internal starting sites (ITSS) between delay fragments. predict_ps_itss predicts ps and ITSS within the same TU. Neighboring delay segments are compared to each other by positioning the intercept of the second segment into the first segment using slope and intercept coefficients.#' predict_ps_itss uses 3 steps to identify ps and ITSS:

- 1. select unique TU.
- 2. select from the input dataframe the columns: ID, position, strand, delay, delay fragment, TU and slope coordinates, velocity_fragment and intercept.
- 3. select delay segments in the TU.
- 4. loop into all delay segments and estimate the coordinates of the last point of the first segment using the coefficients of the second segment and vice versa. We get two predicted positions, the difference between them is compared to the threshold. In case the strand is "-", additional steps are added: The positions of both segments are ordered from the last position to the first one. all positions are merged in one column and subtracted from the maximum position. the column is split in 2. The first and second correspond to the positions of the first and second segments respectively. Both segments are subjected to lm fit and the positions predicted are used on the same way as the opposite strand. if the difference between the positions predicted is lower than negative threshold, ps is assigned otherwise, and if the difference is higher than the positive threshold, ITSS is assigned.

Description

predict_ps_itss: predicts pausing sites (ps) and internal starting sites (ITSS) between delay fragments. predict_ps_itss predicts ps and ITSS within the same TU. Neighboring delay segments are compared to each other by positioning the intercept of the second segment into the first segment using slope and intercept coefficients.#' predict_ps_itss uses 3 steps to identify ps and ITSS:

1. select unique TU.

52 predict_ps_itss

2. select from the input dataframe the columns: ID, position, strand, delay, delay fragment, TU and slope coordinates, velocity_fragment and intercept.

- 3. select delay segments in the TU.
- 4. loop into all delay segments and estimate the coordinates of the last point of the first segment using the coefficients of the second segment and vice versa. We get two predicted positions, the difference between them is compared to the threshold. In case the strand is "-", additional steps are added: The positions of both segments are ordered from the last position to the first one. all positions are merged in one column and subtracted from the maximum position. the column is split in 2. The first and second correspond to the positions of the first and second segments respectively. Both segments are subjected to lm fit and the positions predicted are used on the same way as the opposite strand. if the difference between the positions predicted is lower than negative threshold, ps is assigned otherwise, and if the difference is higher than the positive threshold, ITSS is assigned.

Usage

```
predict_ps_itss(inp, maxDis = 300)
```

Arguments

inp SummarizedExperiment: the input data frame with correct format.

maxDis integer: the maximal distance allowed between two successive fragments.

Value

the SummarizedExperiment with the columns regarding statistics:

ID: The bin/probe specific ID

position: The bin/probe specific position **delay:** The delay value of the bin/probe

delay_fragment: The delay fragment the bin belongs to

intercept: The vintercept of fit through the respective delay fragment

slope: The slope of the fit through the respective delay fragment

TU: The overarching transcription unit

pausing_site:
iTSS_I:
ps_ts_fragment:
event_duration:

```
data(fragmentation_minimal)
predict_ps_itss(inp = fragmentation_minimal, maxDis = 300)
```

preprocess_e_coli 53

preprocess_e_coli

The result of rifi_preprocess for E.coli example data A SummarizedExperiment containing the output from rifi_penalties including the logbook and the four penalty objects as metadata. A list containing the output from rifi_preprocess, including the inp and the modified input_df.

Description

The result of rifi_preprocess for E.coli example data A SummarizedExperiment containing the output from rifi_penalties including the logbook and the four penalty objects as metadata. A list containing the output from rifi_preprocess, including the inp and the modified input_df.

Usage

```
data(preprocess_e_coli)
```

Format

A SummarizedExperiment:

inp: the SummarizedExperiment:

ID: The bin/probe specific ID

position: The bin/probe specific position

intensity: The relative intensity at time point 0

probe_TI: An internal value to determine which fitting model is applied

flag: Information on which fitting model is applied

postion_segment: The position based segment

fit_obj_TI: the fit object for the TI fit:

0: relative intensities at 0 min

1: relative intensities at 1 min

10: relative intensities at 10 min

15: relative intensities at 15 min

2: relative intensities at 2 min

20: relative intensities at 20 min

3: relative intensities at 3 min

4: relative intensities at 4 min

5: relative intensities at 5 min

6: relative intensities at 6 min

8: relative intensities at 8 min

ID: unique IDs

position: genome positions

filtration: indicator wether the replicate is filtered or not

Source

https://github.com/CyanolabFreiburg/rifi

preprocess_minimal

The result of rifi_preprocess for artificial example data A Summarized-Experiment containing the output from rifi_preprocess

Description

The result of rifi_preprocess for artificial example data A SummarizedExperiment containing the output from rifi_preprocess

Usage

```
data(preprocess_minimal)
```

Format

An object of class RangedSummarizedExperiment with 4 rows and 33 columns.

Source

https://github.com/CyanolabFreiburg/rifi

preprocess_synechocystis_6803

The result of rifi_preprocess for Synechocystis 6803 example data is a A SummarizedExperiment containing the output of rifi_preprocess as an extention to rowRanges

Description

The result of rifi_preprocess for Synechocystis 6803 example data is a A SummarizedExperiment containing the output of rifi_preprocess as an extention to rowRanges

Usage

data(preprocess_synechocystis_6803)

res_minimal 55

Format

A SummarizedExperiment:

inp: the SummarizedExperiment:

ID: The bin/probe specific ID

position: The bin/probe specific position **strand:** The bin/probe specific strand

intensity: The relative intensity at time point 0

probe_TI: An internal value to determine which fitting model is applied

flag: Information on which fitting model is applied **postion_segment:** The position based segment

fit_obj_TI: the fit object for the TI fit:

0: relative intensities at 0 min

2: relative intensities at 2 min

4: relative intensities at 4 min

8: relative intensities at 8 min

16: relative intensities at 16 min

32: relative intensities at 32 min

64: relative intensities at 64 min

ID: unique IDs

position: genome positions

filtration: indicator wether the replicate is filtered or not

Source

https://github.com/CyanolabFreiburg/rifi

res_minimal	The result of event_dataframe for E.coli artificial example. A data
	frame combining the processed genome annotation and a Summa- rizedExperiment data from rifi_stats. The dataframe is

Description

The result of event_dataframe for E.coli artificial example. A data frame combining the processed genome annotation and a SummarizedExperiment data from rifi_stats. The dataframe is

Usage

```
data(res_minimal)
```

res_minimal

Format

```
A list with 2 items:
region: the region from the gff file
gene: the annotated gene name
locus_tag: the annotated locus tag
strand: the strand of the annotation
TU: The overarching transcription unit
position: The bin/probe specific position
FC_fragment_intensity:
FC_intensity:
p_value_intensity:
FC_fragment_HL:
FC_HL:
p_value_HL:
FC_HL_intensity_fragment:
FC_HL_intensity:
FC_HL_adapted:
p_value_Manova:
synthesis_ratio:
synthesis_ratio_event:
pausing_site:
iTSS_I:
event_ps_itss_p_value_Ttest:
ps_ts_fragment:
event_position:
event_duration:
delay_frg_slope:
p_value_slope:
delay:
half_life:
intensity:
```

Source

https://github.com/CyanolabFreiburg/rifi

rifi_fit 57

rifi_fit

rifi_fit: conveniently wraps all fitting steps

Description

Wraps the functions: nls2_fit, TI_fit, plot_nls2_function and plot_singleProbe_function.

Usage

```
rifi_fit(
  inp,
  cores = 1,
 viz = FALSE,
 restr = 0.2,
 decay = seq(0.08, 0.11, by = 0.02),
 delay = seq(0, 10, by = 0.1),
 k = seq(0.1, 1, 0.2),
 bg = 0.2,
 TI_k = seq(0, 1, by = 0.5),
 TI_{decay} = c(0.05, 0.1, 0.2, 0.5, 0.6),
 TI = seq(0, 1, by = 0.5),
 TI_{delay} = seq(0, 2, by = 0.5),
 TI_rest_delay = seq(0, 2, by = 0.5),
 TI_bg = 0
)
```

Arguments

inp	SummarizedExperiment: the input with correct format.
cores	integer: the number of assigned cores for the task.
viz	logical: whether to visualize the output.
restr	numeric: a parameter that restricts the freedom of the fit to avoid wrong TI-term_factors, ranges from $0\ to \ 0.2$
decay	numeric vector: A sequence of starting values for the decay. Default is seq(.08, 0.11, by=.02)
delay	numeric vector: A sequence of starting values for the delay. Default is $seq(0,10, by=.1)$
k	numeric vector: A sequence of starting values for the synthesis rate. Default is $\mbox{seq}(0.1,\!1,\!0.2)$
bg	numeric vector: A sequence of starting values. Default is 0.2.
TI_k	numeric vector: A sequence of starting values for the synthesis rate. Default is $seq(0, 1, by = 0.5)$.
TI_decay	numeric vector: A sequence of starting values for the decay. Default is $c(0.05, 0.1, 0.2, 0.5, 0.6)$.

58 rifi_fragmentation

```
TI numeric vector: A sequence of starting values for the TI. Default is seq(0, 1, by = 0.5).

TI_delay numeric vector: A sequence of starting values for the delay. Default is seq(0, 2, by = 0.5).

TI_rest_delay numeric vector: A sequence of starting values. Default is seq(0, 2, by = 0.5).

TI_bg numeric vector: A sequence of starting values. Default is 0.
```

Value

the SummarizedExperiment object: with delay, decay and TI_termination_factor added to the rowRanges. The full fit data is saved in the metadata as "fit_STD" and "fit_TI". A plot is given if viz = TRUE.

See Also

```
nls2_fit
TI_fit
plot_nls2
plot_singleProbe
```

Examples

```
data(preprocess_minimal)
rifi_fit(
  inp = preprocess_minimal,
  cores = 1, viz = FALSE, restr = 0.1,
  decay = seq(.08, 0.11, by = .02),
  delay = seq(0, 10, by = .1), k = seq(0.1, 1, 0.2), bg = 0.2,
  TI_k = seq(0, 1, by = 0.5), TI_decay = c(0.05, 0.1, 0.2, 0.5, 0.6),
  TI = seq(0, 1, by = 0.5), TI_delay = seq(0, 2, by = 0.5),
  TI_rest_delay = seq(0, 2, by = 0.5), TI_bg = 0
)
```

rifi_fragmentation

rifi_fragmentation: conveniently wraps all fragmentation steps

Description

rifi_fragmentation wraps the following functions:

- 1. fragment_delay
- 2. fragment_HL
- 3. fragment_inty
- 4. TUgether
- 5. fragment_TI

rifi_fragmentation 59

Usage

```
rifi_fragmentation(
   inp,
   cores = 1,
   pen_delay = NULL,
   pen_out_delay = NULL,
   pen_HL = NULL,
   pen_out_HL = NULL,
   pen_inty = NULL,
   pen_out_inty = NULL,
   pen_TU = NULL,
   pen_TI = NULL,
   pen_out_TI = NULL)
```

Arguments

inp	SummarizedExperiment: the input data frame with correct format.
cores	integer: the number of assigned cores for the task.
pen_delay	numeric: an internal parameter for the dynamic programming. Higher values result in fewer fragments. Default is the auto generated value.
pen_out_delay	numeric: an internal parameter for the dynamic programming. Higher values result in fewer allowed outliers. Default is the auto generated value.
pen_HL	numeric: an internal parameter for the dynamic programming. Higher values result in fewer fragments. Default is the auto generated value.
pen_out_HL	numeric: an internal parameter for the dynamic programming. Higher values result in fewer allowed outliers. Default is the auto generated value.
pen_inty	numeric: an internal parameter for the dynamic programming. Higher values result in fewer fragments. Default is the auto generated value.
pen_out_inty	numeric: an internal parameter for the dynamic programming. Higher values result in fewer allowed outliers. Default is the auto generated value.
pen_TU	numeric: an internal parameter for the dynamic programming. Higher values result in fewer fragments. Default -0.75.
pen_TI	numeric: an internal parameter for the dynamic programming. Higher values result in fewer fragments. Default is the auto generated value.
pen_out_TI	numeric: an internal parameter for the dynamic programming. Higher values result in fewer allowed outliers. Default is the auto generated value.

Value

the SummarizedExperiment object: with delay_fragment, HL_fragment, intensity_fragment, TI_termination_fragment and TU, and the respective values added to the rowRanges.

rifi_penalties

See Also

```
fragment_delay
fragment_HL
fragment_inty
TUgether
fragment_TI
```

Examples

```
data(penalties_minimal)
rifi_fragmentation(inp = penalties_minimal, cores = 2)
```

rifi_penalties

rifi_penalties: conveniently wraps all penalty steps

Description

wraps the functions: make_pen and viz_pen_obj.

Usage

```
rifi_penalties(
  inp,
 details = FALSE,
 viz = FALSE,
  top_i = 25,
  cores = 1,
 dpt = 1,
  smpl_min = 10,
  smpl_max = 100,
 sta_pen = 0.5,
 end_pen = 4.5,
 rez_pen = 9,
  sta_pen_out = 0.5,
 end_pen_out = 4.5,
  rez_pen_out = 9
)
```

Arguments

inp	SummarizedExperiment: the input data frame with correct format.
details	logical: whether to return the penalty objects or just the logbook.
viz	logical: whether to visualize the output or not. Default is FALSE
top_i	integer: the number of top results visualized. Default is all.

rifi_preprocess 61

cores	integer: the number of assigned cores for the task.
dpt	integer: the number of times a full iteration cycle is repeated with a more narrow range based on the previous cycle. Default is 2.
smpl_min	integer: the smaller end of the sampling size. Default is 10.
smpl_max	integer: the larger end of the sampling size. Default is 100.
sta_pen	numeric: the lower starting penalty. Default is 0.5.
end_pen	numeric: the higher starting penalty. Default is 4.5.
rez_pen	numeric: the number of penalties iterated within the penalty range. Default is 9.
sta_pen_out	numeric: the lower starting outlier penalty. Default is 0.5.
end_pen_out	numeric: the higher starting outlier penalty. Default is 3.5.
rez_pen_out	numeric: the number of outlier penalties iterated within the outlier penalty range. Default is 7.

Value

the SummarizedExperiment object: with the penalties in the logbook added to the metadata. Also adds logbook_details if details is TRUE, and plots the penalties if viz is TRUE.

See Also

```
make_pen
viz_pen_obj
```

Examples

```
data(fit_minimal)
rifi_penalties(
  inp = fit_minimal, details = FALSE, viz = FALSE,
  top_i = 25, cores = 2, dpt = 1, smpl_min = 10, smpl_max = 100,
  sta_pen = 0.5, end_pen = 4.5, rez_pen = 9, sta_pen_out = 0.5,
  end_pen_out = 4.5, rez_pen_out = 9
)
```

rifi_preprocess

rifi_preprocess: conveniently wraps all pre-processing steps. Wraps the functions:

- 1. check_input
- 2. make_df
- 3. function_seg
- 4. finding_PDD
- 5. finding_TI Allows for the optional integration of filter functions. Filter functions mark replicates with TRUE. Those are then not considered in the fit! FUN_filter is a general filter usually to exclude probes with low expression or "bad" patterns.

62 rifi_preprocess

Description

rifi_preprocess: conveniently wraps all pre-processing steps. Wraps the functions:

- 1. check_input
- 2. make_df
- 3. function_seg
- 4. finding_PDD
- 5. finding_TI Allows for the optional integration of filter functions. Filter functions mark replicates with TRUE. Those are then not considered in the fit! FUN_filter is a general filter usually to exclude probes with low expression or "bad" patterns.

Usage

```
rifi_preprocess(
  inp,
  cores,
 FUN_filter = function(x) {
                                  FALSE },
 bg = 0,
  rm_FLT = FALSE,
  thrsh\_check = 0,
  dista = 300,
  run_PDD = FALSE,
 pen_PDD = 2,
 pen_out_PDD = 1,
  thrsh_PDD = 0.001,
  pen_TI = 10,
  thrsh_TI = 0.5,
  add = 1000
)
```

Arguments

inp	SummarizedExperiment: the input.
cores	integer: the number of assigned cores for the task.
FUN_filter	function: A function of x , returning a logical. x is the numeric vector of the intensity from all time points for a specific replicate.
bg	numeric: threshold over which the last time point has to be to be fitted with the above background mode.
rm_FLT	logical: remove IDs where all replicates are marked as filtered by the background check. Default is FALSE.
thrsh_check	numeric: the minimal allowed intensity for time point "0". Advised to be kept at $0!$ Default is 0 .
dista	integer: the amount of nucleotides defining the gap. Default is 300.
run_PDD	logical: running the PDD flag function

rifi_stats 63

pen_PDD	numeric: an internal parameter for the dynamic programming. Higher values result in fewer fragments. Advised to be kept at 2. Default is 2.
pen_out_PDD	numeric: an internal parameter for the dynamic programming. Higher values result in fewer possible outliers. Advised to be kept at 1. Default is 1.
thrsh_PDD	numeric: an internal parameter that allows fragments with slopes steeper than the threshold to be flagged with " PDD ". Higher values result in fewer candidates . Advised to be kept at 0.001. Default is 0.001.
pen_TI	numeric: an internal parameter for the dynamic programming. Higher values result in fewer fragments. Advised to be kept at 10. Default is 10.
thrsh_TI	numeric: an internal parameter that allows fragments with a certain amount of IDs with higher relative intensities at time points later than "0" to be flagged as " <i>TI</i> ". Higher values result in fewer candidates0.5 is 25 %, 0 is 50%, 0.5 is 75%. Advised to be kept at 0.5. Default is 0.5.
add	integer: range of nucleotides before a potential TI event where in IDs are fitted with the TI fit.

Value

the SummarizedExperiment object: checked, and with position, ID, intensity, probe_TI, position_segment, flag and filtration added to the rowRanges.

See Also

```
check_input
make_df
segment_pos
finding_PDD
finding_TI
```

Examples

```
data(example_input_minimal)
rifi_preprocess(
  inp = example_input_minimal, cores = 2, bg = 100, rm_FLT = FALSE,
  thrsh_check = 0, dista = 300, run_PDD = FALSE
  )
```

rifi_stats

rifi_stats: conveniently wraps all statistical prediction steps. Wraps the functions: predict_ps_itss, apply_Ttest_delay, apply_ancova, apply_event_position, apply_t_test, fold_change, apply_manova, apply_t_test_ti and gff3_preprocess.

64 rifi_stats

Description

rifi_stats: conveniently wraps all statistical prediction steps. Wraps the functions: predict_ps_itss, apply_Ttest_delay, apply_ancova, apply_event_position, apply_t_test, fold_change, apply_manova, apply_t_test_ti and gff3_preprocess.

Usage

```
rifi_stats(inp, dista = 300, path)
```

Arguments

inp SummarizedExperiment: the input data frame with correct format.

dista integer: the maximal distance allowed between two successive fragments. De-

fault is the auto generated value.

path path: to the directory containing the gff3 file.

Value

the probe data frame with the columns regarding statistics:

ID: The bin/probe specific ID

position: The bin/probe specific position **strand:** The bin/probe specific strand

intensity: The relative intensity at time point 0

probe_TI: An internal value to determine which fitting model is applied

flag: Information on which fitting model is applied position_segment: The position based segment

delay: The delay value of the bin/probe **half_life:** The half-life of the bin/probe

TI_termination_factor: The termination factor of the bin/probe

delay_fragment: The delay fragment the bin belongs to

velocity_fragment: The velocity value of the respective delay fragment **intercept:** The vintercept of fit through the respective delay fragment

slope: The slope of the fit through the respective delay fragment

HL_fragment: The half-life fragment the bin belongs to

HL_mean_fragment: The mean half-life value of the respective half-life fragment

intensity_fragment: The intensity fragment the bin belongs to

intensity_mean_fragment: The mean intensity value of the respective intensity fragment

TU: The overarching transcription unit

TI_termination_fragment: The TI fragment the bin belongs to

TI_mean_termination_factor: The mean termination factor of the respective TI fragment

seg_ID: The combined ID of the fragment

rifi_stats 65

```
pausing_site:
   iTSS_I:
   ps_ts_fragment:
   event\_ps\_itss\_p\_value\_Ttest:
    p_value_slope:
    delay_frg_slope:
    velocity_ratio:
    event_duration:
   event_position:
    FC_HL:
   FC_fragment_HL:
   p_value_HL:
   FC_intensity:
   FC_fragment_intensity:
   p_value_intensity:
   FC_HL_intensity:
   FC_HL_intensity_fragment:
   FC_HL_adapted:
    synthesis_ratio:
   synthesis_ratio_event:
    p_value_Manova:
    p_value_TI:
    TI_fragments_p_value:
See Also
    predict_ps_itss
    apply_Ttest_delay
    apply_ancova
    apply_event_position
    apply_t_test
    fold_change
    apply_manova
    apply_t_test_ti
   gff3_preprocess
Examples
    data(fragmentation_minimal)
    rifi_stats(inp = fragmentation_minimal, dista = 300,
    path = gzfile(system.file("extdata", "gff_e_coli.gff3.gz",
   package = "rifi")))
```

66 rifi_summary

rifi_summary

rifi_summary: conveniently wraps and summarize all rifi outputs. Wraps the functions: event_dataframe, dataframe_summary, dataframe_summary_events, dataframe_summary_events_HL_int, dataframe_summary_events_ps_itss, dataframe_summary_events_velocity and dataframe_summary_TI.

Description

rifi_summary: conveniently wraps and summarize all rifi outputs. Wraps the functions: event_dataframe, dataframe_summary_events, dataframe_summary_events_HL_int, dataframe_summary_events_ps_its dataframe_summary_events_velocity and dataframe_summary_TI.

Usage

```
rifi_summary(inp, data_annotation = metadata(inp)$annot[[1]])
```

Arguments

```
inp SummarizedExperiment: the input data frame with correct format. data_annotation dataframe: gff3 dataframe after processing.
```

Value

WIP

See Also

```
event_dataframe
dataframe_summary
dataframe_summary_events
dataframe_summary_events_HL_int
dataframe_summary_events_ps_itss
dataframe_summary_events_velocity
dataframe_summary_TI
```

```
data(stats_minimal)
if(!require(SummarizedExperiment)){
suppressPackageStartupMessages(library(SummarizedExperiment))
}
rifi_summary(inp = stats_minimal, data_annotation =
metadata(stats_minimal)$annot[[1]])
```

rifi_visualization

rifi_visualization: plots all the data with fragments and events from both strands. rifi visualization: plots the whole genome with genes, transcription units (TUs), delay, half-life (HL), intensity fragments features, events, velocity, annotation, coverage if available. rifi_visualization uses several functions to plot the genes including as-RNA and ncRNA and TUs as segments. The function plots delay, HL and intensity fragments with statistical t-test between the neighboring fragment, significant t-test is assigned with ". t-test and Manova statistical test are also depicted as ". The functions used are: annotation_plot: plots the corresponding annotation positive_strand_function: plots delay, HL, intensity and events of positive strand negative strand function: plots delay, HL, intensity and events of negative strand empty data positive: plots empty boxes in case no data is available for positive strand empty_data_negative: plots empty boxes in case no data is available for negative strand strand_selection: check if data is stranded and arrange by position. splitGenome_function: splits the genome into fragments indice_function: assign a new column to the data to distinguish between fragments, outliers from delay or HL or intensity. TU annotation: designs the segments border for the genes and TUs annotation gene_annot_function: it requires gff3 file, returns a dataframe adjusting each fragment according to its annotation. It allows as well the plot of genes and TUs shared into two pages label_log2_function: used to add log scale to intensity values. label square function: used to add square scale to coverage values. coverage function: this function is used only in case of coverage is available. secondaryAxis: adjusts the half-life or delay to 20 in case of the dataframe row numbers is equal to 1 and the half-life or delay exceed the limit, they are plotted with different shape and color. add genomeBorders: when the annotated genes are on the borders, they can not be plotted, therefore the region was split in 2 adding the row corresponding to the split part to the next annotation (i + 1) except for the first page. my_arrow: creates an arrow for the annotation. arrange_byGroup: selects the last row for each segment and add 40 nucleotides in case of negative strand for a nice plot. regr: plots the predicted delay from linear regression if the data is on negative strand meanPosition: assign a mean position for the plot. delay_mean: adds a column in case of velocity is NA or equal to 60. The mean of the delay is calculated outliers. my_segment_T: plots terminals and pausing sites labels. my_segment_NS: plots internal starting sites 'iTSS'. min_value: returns minimum value for event plots in intensity plot. velocity fun: function for velocity plot limit function: for values above 10 or 20 in delay and hl. Limit of the axis is set differently. y-axis limit is applied only if we have more than 3 values above 10 and lower or equal to 20. An exception is added in case a dataframe has less than 3 rows and 1 or more values are above 10, the rest of the values above 20 are adjusted to 20 on "secondaryAxis" function. empty_boxes: used only in case the dataframe from the positive strand is not empty, the TU are annotated. function_TU_arrow: used to avoid plotting arrows when a TU is split into two pages. terminal_plot_lm: draws a linear regression line when terminal outliers have an intensity above a certain threshold and are consecutive. Usually are smallRNA (ncRNA, asRNA). slope_function: replaces slope lower than 0.0009 to 0. velo function: replaces infinite velocity with NA. plot the coverage of RNA_seq in exponential phase growth

Description

rifi_visualization: plots all the data with fragments and events from both strands. rifi_visualization: plots the whole genome with genes, transcription units (TUs), delay, half-life (HL), intensity fragments features, events, velocity, annotation, coverage if available. rifi_visualization uses several functions to plot the genes including as-RNA and ncRNA and TUs as segments. The function plots delay, HL and intensity fragments with statistical t-test between the neighboring fragment, significant t-test is assigned with ". t-test and Manova statistical test are also depicted as ". The functions used are: annotation_plot: plots the corresponding annotation positive_strand_function: plots delay, HL, intensity and events of positive strand negative_strand_function: plots delay, HL, intensity and events of negative strand empty_data_positive: plots empty boxes in case no data is available for positive strand empty data negative: plots empty boxes in case no data is available for negative strand strand_selection: check if data is stranded and arrange by position. splitGenome_function: splits the genome into fragments indice_function: assign a new column to the data to distinguish between fragments, outliers from delay or HL or intensity. TU_annotation: designs the segments border for the genes and TUs annotation gene_annot_function: it requires gff3 file, returns a dataframe adjusting each fragment according to its annotation. It allows as well the plot of genes and TUs shared into two pages label log2 function: used to add log scale to intensity values. label square function: used to add square scale to coverage values, coverage function: this function is used only in case of coverage is available. secondary Axis: adjusts the half-life or delay to 20 in case of the dataframe row numbers is equal to 1 and the half-life or delay exceed the limit, they are plotted with different shape and color. add_genomeBorders: when the annotated genes are on the borders, they can not be plotted, therefore the region was split in 2 adding the row corresponding to the split part to the next annotation (i + 1) except for the first page. my_arrow: creates an arrow for the annotation, arrange by Group: selects the last row for each segment and add 40 nucleotides in case of negative strand for a nice plot. regr: plots the predicted delay from linear regression if the data is on negative strand meanPosition: assign a mean position for the plot. delay_mean: adds a column in case of velocity is NA or equal to 60. The mean of the delay is calculated outliers. my segment T: plots terminals and pausing sites labels. my segment NS: plots internal starting sites 'iTSS'. min_value: returns minimum value for event plots in intensity plot. velocity_fun: function for velocity plot limit_function: for values above 10 or 20 in delay and hl. Limit of the axis is set differently. y-axis limit is applied only if we have more than 3 values above 10 and lower or equal to 20. An exception is added in case a dataframe has less than 3 rows and 1 or more values are above 10, the rest of the values above 20 are adjusted to 20 on "secondary Axis" function. empty boxes: used only in case the dataframe from the positive strand is not empty, the TU are annotated, function TU arrow: used to avoid plotting arrows when a TU is split into two pages. terminal_plot_lm: draws a linear regression line when terminal outliers have an intensity above a certain threshold and are consecutive. Usually are smallRNA (ncRNA, asRNA), slope function: replaces slope lower than 0.0009 to 0. velo_function: replaces infinite velocity with NA. plot the coverage of RNA seq in exponential phase growth

Usage

```
rifi_visualization(
  data,
  genomeLength,
  annot,
  coverage = 0,
  chr_fwd = NA,
```

```
region = c("CDS", "asRNA", "5'UTR", "ncRNA", "3'UTR", "tRNA"),
 color_region = c("grey0", "red", "blue", "orange", "yellow", "green", "white",
    "darkseagreen1", "grey50", "black"),
  color_text.1 = "grey0",
  color_text.2 = "black",
  color_TU = "blue",
  Alpha = 0.5,
  size_tu = 1.6,
  size_locusTag = 1.6,
  size\_gene = 1.6,
  Limit = 10,
  shape = 22,
  col_outiler = "grey50",
  col_coverage = "grey",
  shape_outlier = 13,
  limit_intensity = NA,
  face = "bold",
  tick_length = 0.3,
  arrow.color = "darkseagreen1",
 minVelocity = 3000,
  medianVelocity = 6000,
  col_above20 = "#00FFFF",
  fontface = "plain",
  shape_above20 = 14,
  axis_text_y_size = 3,
  axis_title_y_size = 6,
  TI_{threshold} = 1.1,
  termination_threshold = 0.8,
  iTSS_threshold = 1.2,
  p_value_int = 0.05,
  p_value_event = 0.05,
  p_value_hl = 0.05,
  p_value_TI = 0.05,
  p_value_manova = 0.05,
  event_duration_ps = 1,
  event_duration_itss = -1,
 HL_threshold_1 = log2(1.5),
 HL_{threshold_2} = -log_2(1.5),
  vel_threshold = 200,
 HL_threshold_color = "black",
  vel_threshold_color = "grey52",
  ps_color = "orange",
  iTSS_I_color = "blue"
)
```

Arguments

 $chr_rev = NA$,

data SummarizedExperiment: the input data frame with correct format.

genomeLength integer: genome length output of gff3_preprocess function and element of meta-

 $data\ of\ Summarized Experiment.$

annot dataframe: the annotation file, output of gff3_preprocess function and element

of metadata of SummarizedExperiment.

coverage integer: in case the coverage is available.

chr_fwd string object: coverage of the forward strand.

chr_rev string object: coverage of the reverse strand.

string vector: vector of colors.

region dataframe: gff3 features of the genome.

color_text.1 string: TU color text color_text.2 string: genes color text

color_TU string. TU color

Alpha integer: color transparency degree.

size_tu integer: TU size

size_locusTag integer: locus_tag size

size_gene integer: font size for gene annotation.

Limit integer: value for y-axis limit. shape integer: value for shape.

col_outiler string: outlier color.

col_coverage integer: color for coverage plot. shape_outlier integer: value for outlier shape.

limit_intensity

color_region

integer: intensity limit if applicable.

face string: label font.

tick_length integer: value for ticks.
arrow.color string: arrows color.

minVelocity integer: threshold to fix the minimum of velocity.
medianVelocity integer: threshold to fix the maximum of velocity.

col_above20 string: color for probes/bin above value 20.

fontface integer: font type

shape_above20 integer: shape for probes/bins above value 20.

axis_text_y_size

integer: text size for y-axis.

axis_title_y_size

integer: title size for y-axis.

TI_threshold integer: threshold for TI between two fragments in case the TI termination factor

drops from the first segment to the second, default 1.1.

termination_threshold

integer: threshold for termination to plot, default .8.

```
iTSS_threshold integer: threshold for iTSS_II selected to plot, default 1.2.
                  integer: p_value of intensity fragments fold-change to plot, default 0.05.
p_value_int
p_value_event
                  integer: p value of t-test from pausing site and iTSS I events to plot, default
                  0.05.
p_value_hl
                  integer: p_value of half_life fragments fold-change to plot, default 0.05.
p_value_TI
                  integer: p_value of TI fragments selected to be plotted, default 0.05.
p_value_manova integer: p_value of manova test fragments to plot, default 0.05.
event_duration_ps
                  integer: threshold for pausing sites selected to plot, default -2.
event_duration_itss
                  integer: threshold for iTSS_I selected to plot, default 2.
HL_threshold_1 integer: threshold for log2FC(HL) selected to plot, default log2(1.5). log2FC(HL)
                  >= log 2(1.5) are indicated by black color. If p value <= p value hl (default
                  0.05), log2FC(HL) is indicated by HL* otherwise HL.
HL_threshold_2 integer: threshold for log2FC(HL) selected to plot, default -log2(1.5). log2FC(HL)
                   <= -log2(1.5) are indicated by green color. If p value <= p value hl (default
                  0.05), log2FC(HL) is indicated by HL* otherwise HL. In case of p value is sig-
                  nificant and the log2FC(HL) is between -log2FC(1.5) and log2FC(1.5), FC is
                   assigned by green color and HL*.
vel_threshold
                  integer: threshold for velocity ratio selected to plot, default 200.
HL_threshold_color
                  string: color for HL fold change plot.
vel_threshold_color
                  string: color for velocity ratio plot.
ps_color
                  string: color for pausing site plot.
iTSS_I_color
                  string: color for iTSS_I plot.
```

Value

The visualization plot.

```
data(stats_minimal)
if(!require(SummarizedExperiment)){
suppressPackageStartupMessages(library(SummarizedExperiment))
}
rifi_visualization(data = stats_minimal,
genomeLength = metadata(stats_minimal)$annot[[2]],
annot = metadata(stats_minimal)$annot[[1]])
```

rifi_wrapper 73

rifi_wrapper	rifi_wrapper: conveniently wraps all functions included on rifi work- flow. Wraps the functions: rifi_preprocess, rifi_fit, rifi_penalties,
	rifi_fragmentation, rifi_stats, rifi_summary and rifi_visualization.

Description

rifi_wrapper: conveniently wraps all functions included on rifi workflow. Wraps the functions: rifi_preprocess, rifi_fit, rifi_penalties, rifi_fragmentation, rifi_stats, rifi_summary and rifi_visualization.

Usage

```
rifi_wrapper(inp, cores, path, bg, restr)
```

Arguments

inp data frame: the input data frame with correct format.

cores integer: the number of assigned cores for the task.

path path: path to an annotation file in gff format.

bg numeric: threshold over which the last time point has to be to be fitted with the above background mode.

above background mode.

restr numeric: a parameter that restricts the freedom of the fit to avoid wrong TI-

term_factors, ranges from 0 to 0.2

Value

All intermediate objects

See Also

```
rifi_preprocess
rifi_fit
rifi_penalties
rifi_fragmentation
rifi_stats
rifi_summary
rifi_visualization
```

Examples

```
data(example_input_minimal)
rifi_wrapper(inp = example_input_minimal, cores = 2, path =
gzfile(system.file("extdata", "gff_e_coli.gff3.gz", package = "rifi")),
bg = 0, restr = 0.01)
```

74 stats_e_coli

segment_pos	segment_pos: divides all IDs by position into position_segments. seg- ment_pos adds the column "position_segment" to the rowRanges. To reduce run time, the data is divided by regions of no expression larger than "dist" nucleotides.

Description

segment_pos: divides all IDs by position into position_segments. segment_pos adds the column "position_segment" to the rowRanges. To reduce run time, the data is divided by regions of no expression larger than "dist" nucleotides.

Usage

```
segment_pos(inp, dista = 300)
```

Arguments

inp SummarizedExperiment: the input.

dista integer: the amount of nucleotides defining the gap. Default is 300.

Value

the SummarizedExperiment object: with position_segment added to the rowRanges.

Examples

```
data(preprocess_minimal)
segment_pos(inp = preprocess_minimal, dista = 300)
```

stats_e_coli

The result of rifi_stats for E.coli example data A SummarizedExperiment containing the output from rifi_stats

Description

The result of rifi_stats for E.coli example data A SummarizedExperiment containing the output from rifi_stats

Usage

```
data(stats_e_coli)
```

stats_e_coli 75

Format

A SummarizedExperiment:

ID: The bin/probe specific ID

position: The bin/probe specific position **strand:** The bin/probe specific strand

intensity: The relative intensity at time point 0

probe_TI: An internal value to determine which fitting model is applied

flag: Information on which fitting model is appliedposition_segment: The position based segment

delay: The delay value of the bin/probe **half_life:** The half-life of the bin/probe

TI_termination_factor: The termination factor of the bin/probe

delay fragment: The delay fragment the bin belongs to

velocity_fragment: The velocity value of the respective delay fragmentintercept: The vintercept of fit through the respective delay fragmentslope: The slope of the fit through the respective delay fragment

HL_fragment: The half-life fragment the bin belongs to

HL_mean_fragment: The mean half-life value of the respective half-life fragment

intensity_fragment: The intensity fragment the bin belongs to

intensity_mean_fragment: The mean intensity value of the respective intensity fragment

TU: The overarching transcription unit

TI_termination_fragment: The TI fragment the bin belongs to

TI_mean_termination_factor: The mean termination factor of the respective TI fragment

seg_ID: The combined ID of the fragment

pausing_site:

iTSS_I:

ps_ts_fragment:

event_ps_itss_p_value_Ttest:

p_value_slope:

delay_frg_slope:

velocity_ratio:

event_duration:

event_position:

FC HL:

FC_fragment_HL:

p_value_HL:

FC_intensity:

76 stats_minimal

```
FC_fragment_intensity:
p_value_intensity:
FC_HL_intensity:
FC_HL_intensity_fragment:
FC_HL_adapted:
synthesis_ratio:
synthesis_ratio_event:
p_value_Manova:
p_value_TI:
TI_fragments_p_value:
```

Source

https://github.com/CyanolabFreiburg/rifi

stats_minimal

The result of rifi_stats for artificial example data A SummarizedExperiment containing the output of rifi_stats as an extention to rowRanges and metadata (gff file processed, see gff file documentation)

Description

The result of rifi_stats for artificial example data A SummarizedExperiment containing the output of rifi_stats as an extention to rowRanges and metadata (gff file processed, see gff file documentation)

Usage

```
data(stats_minimal)
```

Format

A rowRanges of SummarizedExperiment with 24 rows and 45 variables:

ID: The bin/probe specific ID

position: The bin/probe specific position

intensity: The relative intensity at time point 0

probe_TI: An internal value to determine which fitting model is applied

flag: Information on which fitting model is applied **position_segment:** The position based segment

delay: The delay value of the bin/probe **half life:** The half-life of the bin/probe

TI_termination_factor: The termination factor of the bin/probe

stats_minimal 77

delay_fragment: The delay fragment the bin belongs to velocity_fragment: The velocity value of the respective delay fragment intercept: The vintercept of fit through the respective delay fragment **slope:** The slope of the fit through the respective delay fragment **HL_fragment:** The half-life fragment the bin belongs to **HL_mean_fragment:** The mean half-life value of the respective half-life fragment intensity_fragment: The intensity fragment the bin belongs to intensity_mean_fragment: The mean intensity value of the respective intensity fragment TU: The overarching transcription unit **TI_termination_fragment:** The TI fragment the bin belongs to TI_mean_termination_factor: The mean termination factor of the respective TI fragment **seg_ID:** The combined ID of the fragment pausing site: iTSS_I: ps_ts_fragment: event_ps_itss_p_value_Ttest: p_value_slope: delay_frg_slope: velocity_ratio: event_duration: event_position: FC_HL: FC_fragment_HL: p_value_HL: **FC_intensity:** FC_fragment_intensity: p_value_intensity: **FC_HL_intensity:** FC_HL_intensity_fragment: FC_HL_adapted: synthesis_ratio: synthesis_ratio_event: p_value_Manova: p_value_TI: TI_fragments_p_value:

Source

https://github.com/CyanolabFreiburg/rifi

stats_synechocystis_6803

The result of rifi_stats for Synechocystis 6803 example data A SummarizedExperiment containing the output of rifi_stats as an extention to rowRanges

Description

The result of rifi_stats for Synechocystis 6803 example data A SummarizedExperiment containing the output of rifi_stats as an extention to rowRanges

Usage

data(stats_synechocystis_6803)

Format

The rowRanges of SummarizedExperiment:

ID: The bin/probe specific ID

position: The bin/probe specific position

intensity: The relative intensity at time point 0

probe_TI: An internal value to determine which fitting model is applied

flag: Information on which fitting model is applied position_segment: The position based segment

delay: The delay value of the bin/probe **half_life:** The half-life of the bin/probe

TI_termination_factor: The termination factor of the bin/probe

delay_fragment: The delay fragment the bin belongs to

velocity_fragment: The velocity value of the respective delay fragment **intercept:** The vintercept of fit through the respective delay fragment

slope: The slope of the fit through the respective delay fragment

HL_fragment: The half-life fragment the bin belongs to

HL_mean_fragment: The mean half-life value of the respective half-life fragment

intensity_fragment: The intensity fragment the bin belongs to

intensity_mean_fragment: The mean intensity value of the respective intensity fragment

TU: The overarching transcription unit

TI_termination_fragment: The TI fragment the bin belongs to

TI_mean_termination_factor: The mean termination factor of the respective TI fragment

seg_ID: The combined ID of the fragment

pausing_site:

```
iTSS_I:
ps_ts_fragment:
event_ps_itss_p_value_Ttest:
p_value_slope:
delay_frg_slope:
velocity_ratio:
event_duration:
event_position:
FC_HL:
FC_fragment_HL:
p_value_HL:
FC_intensity:
FC_fragment_intensity:
p_value_intensity:
FC_HL_intensity:
FC_HL_intensity_fragment:
FC\_HL\_adapted:
synthesis_ratio:
synthesis_ratio_event:
p_value_Manova:
p_value_TI:
TI_fragments_p_value:
```

Source

https://github.com/CyanolabFreiburg/rifi

summary_e_coli	The result of rifi_summary for E.coli example data A Summarized-	
	Experiment containing the output of rifi_stats as an extention to rowRanges	

Description

The result of rifi_summary for E.coli example data A SummarizedExperiment containing the output of rifi_stats as an extention to rowRanges

Usage

```
data(summary_e_coli)
```

Format

The rowRanges of SummarizedExperiment:

```
bin_df: all information regarding bins:
     ID:
     feature_type:
     gene:
     locus tag:
     position:
     strand: The bin/probe specific strand
     segment: The segment the bin/probe belongs to
     TU: The overarching transcription unit
     delay_fragment: The delay fragment the bin/probe belongs to
     delay: The delay of the bin/probe
     HL_fragment: The half-life fragment the bin/probe belongs to
     half life: The half-life of the bin/probe
     intensity_fragment: The intensity fragment the bin/probe belongs to
     intensity: The relative intensity at time point 0
     flag: The flag of the bin/probe(TI, PDD)
     TI_termination_factor: The TI_termination_factor of the bin/probe (in case TI is detected)
frag_df: all information regarding fragments:
     feature type:
     gene:
     locus tag:
     first_position_frg: The first position of the fragment on the genome
     last_position_frg: The last position of the fragment on the genome
     strand: The bin/probe specific strand
     TU: The overarching transcription unit
     segment: The segment the fragment belongs to
     delay_fragment: The delay fragment of the fragment
     HL_fragment: The half-life fragment of the fragment
     half life: The half-life mean of the fragment
     HL_SD: The half-life standard deviation of the fragment
     HL SE: The half-life standard error of the fragment
     intensity_fragment: The intensity_fragment of the fragment
     intensity: The relative intensity at time point 0
     intensity_SD: The intensity standard deviation of the fragment
     intensity_SE: The intensity standard error of the fragment
     velocity: The velocity value of the respective delay fragment
event_df: all information regarding events:
     event:
     p_value:
```

```
p_adjusted:
     FC_HL: Fold change of half-life
     FC_intensity: Fold change of intensity
     FC_HL_adapted: Fold change of half-life/ fold change of intensity, position of the half-life
         fragment is adapted to intensity fragment
     FC_HL_FC_intensity: Fold change of half-life/ fold change of intensity
     event_position:
     velocity_ratio:
     feature_type:
     gene:
     locus_tag:
     strand: The bin/probe specific strand
     TU: The overarching transcription unit
     segment_1:
     segment_2:
     event duration:
     gap_fragments:
     features:
events_HL_int_df: all information regarding events related to half-life and intensity:
     event:
     p_value:
     p_adjusted:
     FC_HL:
     FC_intensity:
     FC_HL_adapted: Fold change of half-life/ fold change of intensity, position of the half-life
         fragment is adapted to intensity fragment
     FC_HL_FC_intensity: Fold change of half-life/ fold change of intensity
     event_position:
     feature_type:
     gene:
     locus_tag:
     strand: The bin/probe specific strand
     TU: The overarching transcription unit
     segment 1:
     segment_2:
     event_duration:
     gap_fragments:
     features:
events ps itss df: all information regarding events related to pausing sites and iTSS I:
     event:
     p_value:
     p_adjusted:
```

```
event_position:
    velocity_ratio:
    FC_HL_adapted:
    feature_type:
    gene:
    locus_tag:
    strand: The bin/probe specific strand
    TU: The overarching transcription unit
    segment_1:
    segment_2:
    event_duration:
    gap_fragments:
    features:
events_velocity_df: all information regarding events related to velocity:
    event:
    p_value:
    p_adjusted:
    event_position:
    velocity_ratio:
    feature_type:
    gene:
    locus_tag:
    strand: The bin/probe specific strand
    TU: The overarching transcription unit
    segment_1:
    segment_2:
    event_duration:
    gap_fragments:
    features:
TI_df: all information regarding TI:
    event:
    TI fragment:
    TI_termination_factor:
    p_value:
    p_adjusted:
    feature_type:
    gene:
    locus_tag:
    strand: The bin/probe specific strand
    TU: The overarching transcription unit
    features:
    event_position:
    position_1:
    position_2:
```

summary_minimal 83

Source

https://github.com/CyanolabFreiburg/rifi

summary_minimal The result of rifi_summary for artificial example data A Summarized-Experiment with the output from rifi_summary as metadata

Description

The result of rifi_summary for artificial example data A SummarizedExperiment with the output from rifi_summary as metadata

Usage

```
data(summary_minimal)
```

Format

A list of 7 data frames with 290 rows and 11 variables, 36 rows and 11 variables, 57 rows and 18 variables, and 8 rows and 14 variables:

```
bin_df: all information regarding bins:
```

ID:

feature_type:

gene:

locus_tag:

position:

strand: The bin/probe specific strand

segment: The segment the bin/probe belongs to

TU: The overarching transcription unit

delay_fragment: The delay fragment the bin/probe belongs to

delay: The delay of the bin/probe

HL_fragment: The half-life fragment the bin/probe belongs to

half_life: The half-life of the bin/probe

intensity_fragment: The intensity fragment the bin/probe belongs to

intensity: The relative intensity at time point 0

flag: The flag of the bin/probe(TI, PDD)

TI_termination_factor: The TI_termination_factor of the bin/probe (in case TI is detected)

frag_df: all information regarding fragments:

feature_type:

gene:

locus_tag:

first_position_frg: The first position of the fragment on the genome

84 summary_minimal

```
last_position_frg: The last position of the fragment on the genome
    strand: The bin/probe specific strand
    TU: The overarching transcription unit
    segment: The segment the fragment belongs to
    delay_fragment: The delay fragment of the fragment
    HL_fragment: The half-life fragment of the fragment
    half_life: The half-life mean of the fragment
    HL_SD: The half-life standard deviation of the fragment
    HL_SE: The half-life standard error of the fragment
    intensity fragment: The intensity fragment of the fragment
    intensity: The relative intensity at time point 0
    intensity SD: The intensity standard deviation of the fragment
    intensity_SE: The intensity standard error of the fragment
     velocity: The velocity value of the respective delay fragment
event_df: all information regarding events:
     event:
    p_value:
    p_adjusted:
    FC_HL: Fold change of half-life
    FC_intensity: Fold change of intensity
    FC HL adapted: Fold change of half-life/ fold change of intensity, position of the half-life
         fragment is adapted to intensity fragment
    FC_HL_FC_intensity: Fold change of half-life/ fold change of intensity
    event position:
     velocity_ratio:
    feature_type:
     gene:
    locus_tag:
    strand: The bin/probe specific strand
    TU: The overarching transcription unit
    segment_1:
    segment_2:
    event_duration:
    gap_fragments:
    features:
events_HL_int_df: all information regarding events related to half-life and intensity:
     event:
     p_value:
    p_adjusted:
    FC HL:
    FC_intensity:
```

summary_minimal 85

```
FC_HL_adapted: Fold change of half-life/ fold change of intensity, position of the half-life
         fragment is adapted to intensity fragment
     FC_HL_FC_intensity: Fold change of half-life/ fold change of intensity
     event position:
     feature_type:
     gene:
     locus_tag:
     strand: The bin/probe specific strand
     TU: The overarching transcription unit
     segment_1:
     segment_2:
     event_duration:
     gap_fragments:
     features:
events_ps_itss_df: all information regarding events related to pausing sites and iTSS_I:
     event:
     p_value:
     p_adjusted:
     event_position:
     velocity_ratio:
     FC_HL_adapted:
     feature_type:
     gene:
     locus_tag:
     strand: The bin/probe specific strand
     TU: The overarching transcription unit
     segment_1:
     segment_2:
     event_duration:
     gap_fragments:
     features:
events_velocity_df: all information regarding events related to velocity:
     event:
     p_value:
     p_adjusted:
     event_position:
     velocity_ratio:
     feature_type:
     gene:
     locus_tag:
     strand: The bin/probe specific strand
     TU: The overarching transcription unit
```

```
segment_1:
    segment_2:
    event_duration:
    gap_fragments:
    features:
TI_df: all information regarding TI:
    event:
    TI_fragment:
    TI_termination_factor:
    p_value:
    p_adjusted:
    feature_type:
    gene:
    locus_tag:
    strand: The bin/probe specific strand
    TU: The overarching transcription unit
    features:
    event_position:
    position_1:
    position_2:
```

Source

```
https://github.com/CyanolabFreiburg/rifi
```

```
summary_synechocystis_6803
```

The result of rifi_summary for Synechocystis 6803 example data A list containing the output from rifi_summary, including the fragment based data frame, bin based data frame, event data frame and the TI dataframe.

Description

The result of rifi_summary for Synechocystis 6803 example data A list containing the output from rifi_summary, including the fragment based data frame, bin based data frame, event data frame and the TI dataframe.

Usage

```
data(summary_synechocystis_6803)
```

event:

Format

A list of 4 data frames with 3000 rows and 11 variables, 297 rows and 11 variables, 486 rows and 18 variables, and 10 rows and 14 variables:

```
bin_df: all information regarding bins:
     ID:
     feature_type:
     gene:
     locus_tag:
     position:
     strand: The bin/probe specific strand
     segment: The segment the bin/probe belongs to
     TU: The overarching transcription unit
     delay fragment: The delay fragment the bin/probe belongs to
     delay: The delay of the bin/probe
     HL fragment: The half-life fragment the bin/probe belongs to
     half_life: The half-life of the bin/probe
     intensity fragment: The intensity fragment the bin/probe belongs to
     intensity: The relative intensity at time point 0
     flag: The flag of the bin/probe(TI, PDD)
     TI_termination_factor: The TI_termination_factor of the bin/probe (in case TI is detected)
frag_df: all information regarding fragments:
     feature_type:
     gene:
     locus tag:
     first_position_frg: The first position of the fragment on the genome
     last_position_frg: The last position of the fragment on the genome
     strand: The bin/probe specific strand
     TU: The overarching transcription unit
     segment: The segment the fragment belongs to
     delay_fragment: The delay fragment of the fragment
     HL_fragment: The half-life fragment of the fragment
     half life: The half-life mean of the fragment
     HL SD: The half-life standard deviation of the fragment
     HL_SE: The half-life standard error of the fragment
     intensity_fragment: The intensity_fragment of the fragment
     intensity: The relative intensity at time point 0
     intensity SD: The intensity standard deviation of the fragment
     intensity_SE: The intensity standard error of the fragment
     velocity: The velocity value of the respective delay fragment
event df: all information regarding events:
```

```
p_value:
     p_adjusted:
     FC_HL: Fold change of half-life
     FC_intensity: Fold change of intensity
     FC HL adapted: Fold change of half-life/ fold change of intensity, position of the half-life
         fragment is adapted to intensity fragment
     FC_HL_FC_intensity: Fold change of half-life/ fold change of intensity
     event position:
     velocity_ratio:
     feature_type:
     gene:
     locus tag:
     strand: The bin/probe specific strand
     TU: The overarching transcription unit
     segment_1:
     segment 2:
     event_duration:
     gap_fragments:
     features:
events_HL_int_df: all information regarding events related to half-life and intensity:
     event:
     p value:
     p_adjusted:
     FC_HL:
     FC_intensity:
     FC HL adapted: Fold change of half-life/fold change of intensity, position of the half-life
         fragment is adapted to intensity fragment
     FC_HL_FC_intensity: Fold change of half-life/ fold change of intensity
     event position:
     feature_type:
     gene:
     locus tag:
     strand: The bin/probe specific strand
     TU: The overarching transcription unit
     segment_1:
     segment 2:
     event_duration:
     gap fragments:
     features:
events_ps_itss_df: all information regarding events related to pausing sites and iTSS_I:
     event:
     p_value:
```

```
p_adjusted:
    event_position:
    velocity_ratio:
    FC_HL_adapted:
    feature_type:
    gene:
    locus_tag:
    strand: The bin/probe specific strand
    TU: The overarching transcription unit
    segment_1:
    segment_2:
    event_duration:
    gap_fragments:
    features:
events_velocity_df: all information regarding events related to velocity:
    event:
    p_value:
    p_adjusted:
    event_position:
    velocity_ratio:
    feature_type:
    gene:
    locus_tag:
    strand: The bin/probe specific strand
    TU: The overarching transcription unit
    segment_1:
    segment_2:
    event_duration:
    gap_fragments:
    features:
TI_df: all information regarding TI:
    event:
    TI_fragment:
    TI_termination_factor:
    p_value:
    p_adjusted:
    feature_type:
    gene:
    locus_tag:
    strand: The bin/probe specific strand
    TU: The overarching transcription unit
```

90 TI_fit

features: event_position: position_1: position_2:

Source

https://github.com/CyanolabFreiburg/rifi

TI_fit

TI_fit: estimates transcription interference and termination factor using nls function for probe or bin flagged as "TI". TI_fit uses nls2 function to fit the flagged probes or bins with "TI" found using finding_TI.r. It estimates the transcription interference level (referred later to TI) as well as the transcription factor fitting the probes/bins with nls function looping into several starting values. To determine TI and termination factor, TI_fit function is applied to the flagged probes and to the probes localized 1000 nucleotides upstream. Before applying TI_fit function, some probes/bins are filtered out if they are below the background using generic filter BG. The model loops into a dataframe containing sequences of starting values and the coefficients are extracted from the fit with the lowest residuals. When many residuals are equal to 0, the lowest residual can not be determined and the coefficients extracted could be wrong. Therefore, a second filter was developed. First we loop into all starting values, we collect nls objects and the corresponding residuals. They are sorted and residuals non equal to 0 are collected in a vector. If the first residuals are not equal to 0, 20 % of the best residuals are collected in tmp_r_min vector and the minimum termination factor is selected. In case the first residuals are equal to 0 then values between 0 to 20% of the values collected in tmp_r_min vector are gathered. The minimum termination factor coefficient is determined and saved. The coefficients are gathered in res vector and saved as an object.

Description

TI_fit: estimates transcription interference and termination factor using nls function for probe or bin flagged as "TI". TI_fit uses nls2 function to fit the flagged probes or bins with "TI" found using finding_TI.r. It estimates the transcription interference level (referred later to TI) as well as the transcription factor fitting the probes/bins with nls function looping into several starting values. To determine TI and termination factor, TI_fit function is applied to the flagged probes and to the probes localized 1000 nucleotides upstream. Before applying TI_fit function, some probes/bins are filtered out if they are below the background using generic_filter_BG. The model loops into a dataframe containing sequences of starting values and the coefficients are extracted from the fit with the lowest residuals. When many residuals are equal to 0, the lowest residual can not be determined and the coefficients extracted could be wrong. Therefore, a second filter was developed. First we loop into all starting values, we collect nls objects and the corresponding residuals. They

TI_fit 91

are sorted and residuals non equal to 0 are collected in a vector. If the first residuals are not equal to 0, 20 % of the best residuals are collected in tmp_r_min vector and the minimum termination factor is selected. In case the first residuals are equal to 0 then values between 0 to 20% of the values collected in tmp_r_min vector are gathered. The minimum termination factor coefficient is determined and saved. The coefficients are gathered in res vector and saved as an object.

Usage

```
TI_fit(
  inp,
  cores = 1,
  restr = 0.2,
  k = seq(0, 1, by = 0.5),
  decay = c(0.05, 0.1, 0.2, 0.5, 0.6),
  ti = seq(0, 1, by = 0.5),
  ti_delay = seq(0, 2, by = 0.5),
  rest_delay = seq(0, 2, by = 0.5),
  bg = 0
)
```

Arguments

inp	SummarizedExperiment: the input with correct format.
cores	integer: the number of assigned cores for the task.
restr	numeric: a parameter that restricts the freedom of the fit to avoid wrong TI-term_factors, ranges from $0\ to\ 0.2$.
k	numeric vector: A sequence of starting values for the synthesis rate. Default is $seq(0, 1, by = 0.5)$.
decay	numeric vector: A sequence of starting values for the decay Default is $c(0.05, 0.1, 0.2, 0.5, 0.6)$.
ti	numeric vector: A sequence of starting values for the delay. Default is $seq(0, 1, by = 0.5)$.
ti_delay	numeric vector: A sequence of starting values for the delay. Default is $seq(0, 2, by = 0.5)$.
rest_delay	numeric vector: A sequence of starting values. Default is $seq(0, 2, by = 0.5)$.
bg	numeric vector: A sequence of starting values. Default is 0.

Value

the SummarizedExperiment object: with delay, decay and TI_termination_factor added to the rowRanges. The full fit data is saved in the metadata as "fit_TI".

Examples

```
data(preprocess_minimal)
TI_fit(inp = preprocess_minimal, cores=2, restr=0.01)
```

92 TUgether

Τl	Jget	her

TUgether: combines delay fragments into TUs.

Description

TUgether combines delay fragments into TUs. The column "TU" is added.

Usage

```
TUgether(inp, cores = 1, pen = -0.75)
```

Arguments

inp SummarizedExperiment: the input data frame with correct format.

cores cores: integer: the number of assigned cores for the task.

pen numeric: an internal parameter for the dynamic programming. Higher values

result in fewer fragments. Default -0.75.

Details

TUgether combines delay fragments into TUs. It uses score fun_increasing on the start and end points of delay_fragments. The function used is: .score_fun_increasing The input is the SummarizedExperiment object. pen is the penalty for new fragments in the dynamic programming. Since high scores are aimed, pen is negative.

Value

the SummarizedExperiment with the columns regarding the TU:

ID: The bin/inp specific ID

position: The bin/inp specific position

position_segment: The position based segment

delay_fragment: The delay fragment the bin belongs to

intercept: The vintercept of fit through the respective delay fragment

slope: The slope of the fit through the respective delay fragment

TU: The overarching transcription unit

Examples

```
data(fragmentation_minimal)
TUgether(inp = fragmentation_minimal, cores = 2, pen = -0.75)
```

viz_pen_obj 93

viz_pen_obj	viz_pen_obj: visualizes penalty objects. An optional visualization of any penalty object created by make_pen. Can be customized to show only the $n = top_i$ top results.

Description

viz_pen_obj: visualizes penalty objects. An optional visualization of any penalty object created by make_pen. Can be customized to show only the n = top_i top results.

Usage

```
viz_pen_obj(obj, top_i = nrow(obj[[3]][[1]]) * ncol(obj[[3]][[1]]))
```

Arguments

obj object: penalty object(make_pen output)

top_i integer: the number of top results visualized. Default is all.

Value

A visualization of the penalty object

Examples

```
data(penalties_e_coli)
viz_pen_obj(penalties_e_coli$pen_obj_delay,25)
```

wrapper_e_coli

The result of rifi_wrapper for E.coli example data A list of Summa-rizedExperiment containing the output of rifi_wrapper. The list contains 6 elements of SummarizedExperiment output of rifi_preprocess, rifi_fit, rifi_penalties, rifi_fragmentation, rifi_stats and rifi_summary. The plot is generated from rifi_visualization. for more detail, please refer to each function separately.

Description

The result of rifi_wrapper for E.coli example data A list of SummarizedExperiment containing the output of rifi_wrapper. The list contains 6 elements of SummarizedExperiment output of rifi_preprocess, rifi_fit, rifi_penalties, rifi_fragmentation, rifi_stats and rifi_summary. The plot is generated from rifi_visualization. for more detail, please refer to each function separately.

94 wrapper_minimal

Usage

```
data(wrapper_e_coli)
```

Format

An object of class list of length 6.

Source

```
https://github.com/CyanolabFreiburg/rifi
```

wrapper_minimal

The result of rifi_wrapper for E.coli artificial example. A list of SummarizedExperiment containing the output of rifi_wrapper. The list contains 6 elements of SummarizedExperiment output of rifi_preprocess, rifi_fit, rifi_penalties, rifi_fragmentation, rifi_stats and rifi_summary. The plot is generated from rifi_visualization. for more detail, please refer to each function separately.

Description

The result of rifi_wrapper for E.coli artificial example. A list of SummarizedExperiment containing the output of rifi_wrapper. The list contains 6 elements of SummarizedExperiment output of rifi_preprocess, rifi_fit, rifi_penalties, rifi_fragmentation, rifi_stats and rifi_summary. The plot is generated from rifi_visualization. for more detail, please refer to each function separately.

Usage

```
data(wrapper_minimal)
```

Format

An object of class list of length 6.

Source

https://github.com/CyanolabFreiburg/rifi

wrapper_summary_synechocystis_6803

The result of rifi_wrapper for summary_synechocystis_6803 example data A list of SummarizedExperiment containing the output of rifi_wrapper. The list contains 6 elements of SummarizedExperiment output of rifi_preprocess, rifi_fit, rifi_penalties, rifi_fragmentation, rifi_stats and rifi_summary. The plot is generated from rifi_visualization. for more detail, please refer to each function separately.

Description

The result of rifi_wrapper for summary_synechocystis_6803 example data A list of SummarizedExperiment containing the output of rifi_wrapper. The list contains 6 elements of SummarizedExperiment output of rifi_preprocess, rifi_fit, rifi_penalties, rifi_fragmentation, rifi_stats and rifi_summary. The plot is generated from rifi_visualization. for more detail, please refer to each function separately.

Usage

data(wrapper_summary_synechocystis_6803)

Format

An object of class list of length 6.

Source

https://github.com/CyanolabFreiburg/rifi

Index

```
* datasets
                                                dataframe_summary_events, 14
    example_input_e_coli, 28
                                                dataframe_summary_events_HL_int, 17
    example_input_minimal, 29
                                                dataframe_summary_events_ps_itss, 19
    example_input_synechocystis_6803,
                                                dataframe_summary_events_velocity, 22
        29
                                                dataframe_summary_TI, 25
    fit e coli. 32
                                                event_dataframe, 27
    fit_minimal, 33
                                                example_input_e_coli, 28
    fit_synechocystis_6803, 34
                                                example_input_minimal, 29
    fragmentation_e_coli, 36
                                                example_input_synechocystis_6803, 29
    fragmentation_minimal, 37
    fragmentation_synechocystis_6803,
                                                finding_PDD, 30
        38
                                                finding_TI, 31
    penalties_e_coli, 48
                                                fit_e_coli, 32
    penalties_minimal, 49
                                                fit_minimal, 33
    penalties_synechocystis_6803, 50
                                                fit_synechocystis_6803, 34
    preprocess_e_coli, 53
                                                fold_change, 35
    preprocess_minimal, 54
                                                fragment_delay, 39
    preprocess_synechocystis_6803, 54
                                                fragment_HL, 40
    res_minimal, 55
                                                fragment_inty, 41
    stats_e_coli, 74
                                                fragment_TI, 42
    stats_minimal, 76
                                                fragmentation_e_coli, 36
    stats_synechocystis_6803, 78
                                                fragmentation_minimal, 37
    summary_e_coli, 79
                                                fragmentation_synechocystis_6803, 38
    summary_minimal, 83
    summary_synechocystis_6803,86
                                               gff3_preprocess, 43
    wrapper_e_coli, 93
    wrapper_minimal, 94
                                               make_df, 44
    wrapper_summary_synechocystis_6803,
                                               make_pen, 45
        95
                                               nls2_fit, 47
apply_ancova, 3
apply_event_position, 5
                                                penalties_e_coli, 48
apply_manova, 6
                                               penalties_minimal, 49
apply_t_test, 8
                                                penalties_synechocystis_6803, 50
apply_t_test_ti, 10
                                               predict_ps_itss, 51
apply_Ttest_delay, 7
                                               preprocess_e_coli, 53
                                               preprocess_minimal, 54
check_input, 11
                                               preprocess_synechocystis_6803, 54
dataframe_summary, 12
                                               res_minimal, 55
```

INDEX 97

```
rifi_fit, 57
rifi_fragmentation, 58
rifi_penalties, 60
rifi_preprocess, 61
rifi_stats, 63
rifi_summary, 66
rifi_visualization, 67
rifi_wrapper, 73
segment_pos, 74
stats\_e\_coli, 74
stats_minimal, 76
stats_synechocystis_6803,78
summary_e_coli, 79
summary_minimal, 83
summary_synechocystis_6803,86
TI_fit, 90
TUgether, 92
viz_pen_obj, 93
wrapper_e_coli, 93
wrapper_minimal, 94
wrapper\_summary\_synechocystis\_6803, 95
```