
Package ‘SynExtend’
October 11, 2022

Type Package

Title Tools for Working With Synteny Objects

Version 1.8.0

biocViews Genetics, Clustering, ComparativeGenomics, DataImport

Description Shared order between genomic sequences provide a great deal of information. Syn-
teny objects produced by the R package DECIPHER provides quantitative informa-
tion about that shared order. SynExtend provides tools for extracting information from Syn-
teny objects.

Depends R (>= 4.1.0), DECIPHER (>= 2.20.0)

Imports methods, Biostrings, S4Vectors, IRanges, utils, stats,
parallel, graphics, grDevices

Suggests BiocStyle, knitr, rtracklayer, igraph, markdown, rmarkdown

License GPL-3

Encoding UTF-8

NeedsCompilation no

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/SynExtend

git_branch RELEASE_3_15

git_last_commit ada2504

git_last_commit_date 2022-04-26

Date/Publication 2022-10-11

Author Nicholas Cooley [aut, cre] (<https://orcid.org/0000-0002-6029-304X>),
Aidan Lakshman [aut, ctb] (<https://orcid.org/0000-0002-9465-6785>),
Adelle Fernando [ctb],
Erik Wright [aut]

Maintainer Nicholas Cooley <npc19@pitt.edu>

1

https://orcid.org/0000-0002-6029-304X
https://orcid.org/0000-0002-9465-6785

2 BlastSeqs

R topics documented:
BlastSeqs . 2
BlockExpansion . 4
BlockReconciliation . 5
BuiltInEnsembles . 7
DisjointSet . 8
Endosymbionts_GeneCalls . 9
Endosymbionts_LinkedFeatures . 9
Endosymbionts_Pairs01 . 10
Endosymbionts_Pairs02 . 10
Endosymbionts_Pairs03 . 11
Endosymbionts_Sets . 11
Endosymbionts_Synteny . 12
EstimRearrScen . 12
ExampleStreptomycesData . 15
ExtractBy . 16
FindSets . 18
Generic . 19
GetProtWebData.ProtWeb . 19
gffToDataFrame . 21
LinkedPairs . 22
NucleotideOverlap . 23
PairSummaries . 24
plot.ProtWeb . 27
predict.ProtWeaver . 29
ProtWeaver . 33
SequenceSimilarity . 35
SubSetPairs . 37

Index 39

BlastSeqs Run BLAST queries from R

Description

Wrapper to run BLAST queries using the commandline BLAST tool directly from R. Can operate
on an XStringSet or a FASTA file.

This function requires the BLAST+ commandline tools, which can be downloaded here.

Usage

BlastSeqs(seqs, BlastDB,
blastType=c('blastn', 'blastp', 'tblastn', 'blastx', 'tblastx'),
extraArgs='', verbose=TRUE)

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download

BlastSeqs 3

Arguments

seqs Sequence(s) to run BLAST query on. This can be either an XStringSet or a
path to a FASTA file.

BlastDB Path to FASTA file in a pre-built BLAST Database. These can be built using the
commandline makeblastdb function from BLAST+. For more information on
building BLAST DBs, see here.

blastType Type of BLAST query to run. See ’Details’ for more information on available
types.

extraArgs Additional arguments to be passed to the BLAST query excuted on the com-
mand line. This should be a single character string.

verbose Should output be displayed?

Details

BLAST implements multiple types of search. Available types are the following:

• blastn: Nucleotide sequences against database of nucleotide sequences

• blastp: Protein sequences against database of protein sequences

• tblastn: Translates nucleotide sequences to protein sequences, then queries against database
of protein sequences

• blastx: Queries protein sequences against database of nucleotides translated into protein
sequences

• tblastx: Translates nucleotide sequences to protein sequences, then queries against database
of nucleotides translated into protein sequences

Different BLAST queries require different inputs. The function will throw an error if the input data
does not match expected input for the requested query type.

Input data for blastn, tblastn, and tblastx should be nucleotide data.

Input data for blastp and blastx should be amino acid data.

Value

Returns a data frame (data.frame) of results of the BLAST query.

Note

Future release will add ability to create a BLAST database from input data directly in R.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

Examples

#

https://www.ncbi.nlm.nih.gov/books/NBK569841/

4 BlockExpansion

BlockExpansion Attempt to expand blocks of paired features in a PairSummaries ob-
ject.

Description

Attempt to expand blocks of paired features in a PairSummaries object.

Usage

BlockExpansion(Pairs,
GapTolerance = 4L,
DropSingletons = FALSE,
Criteria = "PID",
Floor = 0.5,
NewPairsOnly = TRUE,
DBPATH,
Verbose = FALSE)

Arguments

Pairs An object of class PairSummaries.

GapTolerance Integer value indicating the diff between feature IDs that can be tolerated to
view features as part of the same block. Set by default to 4L, implying that
a single feature missing in a run of pairs will not cause the block to be split.
Setting to 3L would imply that a diff of 3 between features, or a gap of 2
features, can be viewed as those features being part of the same block.

DropSingletons Ignore solo pairs when planning expansion routes. Set to FALSE by default.

Criteria Either “PID” or “Score”, indicating which metric to use to keep or reject pairs.

Floor Lower PID limit for keeping a pair that was evaluated during expansion.

NewPairsOnly Logical indicating whether or not to return only the pairs that were kept from
all expansion attempts, or to return a PairSummaries object with the new pairs
folded in.

DBPATH A file or connection pointing to the DECIPHER database supplied to FindSynteny
for the original map construction.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

Details

BlockExpansion uses a naive expansion algorithm to attempt to fill in gaps in blocks of paired
features and to attempt to expand blocks of paired features.

Value

An object of class PairSummaries.

BlockReconciliation 5

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

PairSummaries, NucleotideOverlap, link{SubSetPairs}, FindSynteny

Examples

DBPATH <- system.file("extdata",
"Endosymbionts.sqlite",
package = "SynExtend")

data("Endosymbionts_Pairs01", package = "SynExtend")
Pairs02 <- BlockExpansion(Pairs = Endosymbionts_Pairs01,

NewPairsOnly = FALSE,
DBPATH = DBPATH,
Verbose = TRUE)

BlockReconciliation Rejection scheme for asyntenic predicted pairs

Description

Take in a PairSummaries object and reject predicted pairs that conflict with syntenic blocks either
locally or globally.

Usage

BlockReconciliation(Pairs,
ConservativeRejection = TRUE,
Precedent = "Size",
PIDThreshold = NULL,
SCOREThreshold = NULL,
Verbose = FALSE)

Arguments

Pairs A PairSummaries object.
ConservativeRejection

A logical defaulting to TRUE. By default only pairs that conflict within a syntenic
block will be rejected. When FALSE any conflict will cause the rejection of the
pair in the smaller block.

Precedent A character vector of length 1, defaulting to “Size”. Selector for whether func-
tion attempts to reconcile with block size as precedent, or mean block PID as
precedent. Currently “Metric” will select mean block PID to set block prece-
dent. Blocks of size 1 cannot reject other blocks. The default behavior causes

6 BlockReconciliation

the rejection of any set of predicted pairs that conflict with a larger block of pre-
dicted pairs. Switching to “Metric” changes this behavior to any block of size 2
or greater will reject any predicted pair that both conflicts with the current block,
and is part of a block with a lower mean PID.

PIDThreshold Defaults to NULL, a numeric of length 1 can be used to retain pairs that would
otherwise be rejected. Pairs that would otherwise be rejected that have a PID >=
PIDThreshold will be retained.

SCOREThreshold Defaults to NULL, a numeric of length 1 can be used retain pairs that would
otherwise be rejected. Pairs that would otherwise be rejected that have a SCORE
>= SCOREThreshold will be retained.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

Details

If a given PairSummaries object contains predicted pairs that conflict, i.e. imply paralogy, or an
“incorrect” and a “correct” ortholog prediction, these predictions will be reconciled. The function
scrolls through pairs based on the size of the syntenic block that they are part of, from largest to
smallest. When ConservativeRejection is TRUE only predicted pairs that exist within the syntenic
block “space” will be removed, this option leaves room for conflicting predictions to remain if they
are non-local to each other, or are on different indices. When ConservativeRejection is FALSE
any pair that conflicts with a larger syntenic block will be rejected. This option forces only 1-1
feature pairings, for features are part of any syntenic block. Predicted pairs that represent a syntenic
block size of 1 feature will not reject other pairs. PIDThreshold and SCOREThreshold can be used
to retain pairs that would otherwise be rejected based on available assessments of their pairwise
alignment.

Value

A data.frame of class “data.frame” and “PairSummaries” of paired genes that are connected by syn-
tenic hits. Contains columns describing the k-mers that link the pair. Columns “p1” and “p2” give
the location ids of the the genes in the pair in the form “DatabaseIdentifier_ContigIdentifier_GeneIdentifier”.
“ExactMatch” provides an integer representing the exact number of nucleotides contained in the
linking k-mers. “TotalKmers” provides an integer describing the number of distinct k-mers linking
the pair. “MaxKmer” provides an integer describing the largest k-mer that links the pair. A column
titled “Consensus” provides a value between zero and 1 indicating whether the kmers that link a
pair of features are in the same position in each feature, with 1 indicating they are in exactly the
same position and 0 indicating they are in as different a position as is possible. The “Adjacent”
column provides an integer value ranging between 0 and 2 denoting whether a feature pair’s direct
neighbors are also paired. Gap filled pairs neither have neighbors, or are included as neighbors. The
“TetDist” column provides the euclidean distance between oligonucleotide - of size 4 - frequences
between predicted pairs. “PIDType” provides a character vector with values of “NT” where either
of the pair indicates it is not a translatable sequence or “AA” where both sequences are translatable.
If users choose to perform pairwise alignments there will be a “PID” column providing a numeric
describing the percent identity between the two sequences. If users choose to predict PIDs using
their own, or a provided model, a “PredictedPID” column will be provided.

BuiltInEnsembles 7

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

FindSynteny, Synteny-class, PairSummaries

Examples

data("Endosymbionts_Pairs02", package = "SynExtend")
Pairs03 <- BlockReconciliation(Pairs = Endosymbionts_Pairs02,

ConservativeRejection = FALSE,
Verbose = TRUE)

BuiltInEnsembles Pretrained ProtWeaver Ensemble Models

Description

ProtWeaver has best performance with an ensemble method combining individual evidence streams.
This data file provides pretrained models for ease of use. These models are trained on genes from
Streptomyces species.

These models are used internally if the user does not provide their own model, and aren’t explicitly
designed to be accessed by the user.

See the examples for how to train your own ensemble model.

Usage

data("BuiltInEnsembles")

Format

The data contain a list of objects of class glm.

Examples

Training own ensemble method to avoid
using built-ins

exData <- get(data("ExampleStreptomycesData"))
pw <- ProtWeaver(exData$Genes[1:50])
datavals <- predict(pw, NoPrediction=TRUE)

Make sure the actual values correspond to the right pairs!
This example just picks random numbers
Do not do this for your own models
actual_values <- sample(c(0,1), nrow(datavals), replace=TRUE)
datavals[,'y'] <- actual_values

8 DisjointSet

myModel <- glm(y~., datavals[,-c(1,2)], family='binomial')

predictionPW <- ProtWeaver(exData$Genes[51:60])
predict(predictionPW,

PretrainedModel=myModel)

DisjointSet Return single linkage clusters from PairSummaries objects.

Description

Takes in a PairSummaries object and return a list of identifiers organized into single linkage clus-
ters.

Usage

DisjointSet(Pairs,
Verbose = FALSE)

Arguments

Pairs A PairSummaries object.

Verbose Logical indicating whether to print progress bars and messages. Defaults to
FALSE.

Details

Takes in a PairSummaries object and return a list of identifiers organized into single linkage clus-
ters.

Value

Returns a list of character vectors representing IDs of sequence features, typically genes.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

FindSynteny, Synteny-class, PairSummaries, FindSets

Examples

data("Endosymbionts_Pairs03", package = "SynExtend")

Sets <- DisjointSet(Pairs = Endosymbionts_Pairs03,
Verbose = TRUE)

Endosymbionts_GeneCalls 9

Endosymbionts_GeneCalls

Example genecalls

Description

A named list of DataFrames.

Usage

data("Endosymbionts_GeneCalls")

Format

A named list.

Details

Example genecalls.

Examples

data(Endosymbionts_GeneCalls)

Endosymbionts_LinkedFeatures

Example synteny links

Description

An object of class LinkedPairs.

Usage

data("Endosymbionts_LinkedFeatures")

Format

An object of class LinkedPairs.

Details

An object of class LinkedPairs.

Examples

data(Endosymbionts_LinkedFeatures)

10 Endosymbionts_Pairs02

Endosymbionts_Pairs01 Example predicted pairs

Description

An object of class PairSummaries.

Usage

data("Endosymbionts_Pairs01")

Format

An object of class PairSummaries.

Details

An object of class PairSummaries.

Examples

data(Endosymbionts_Pairs01)

Endosymbionts_Pairs02 Example predicted pairs

Description

An object of class PairSummaries where blocks have been expanded.

Usage

data("Endosymbionts_Pairs02")

Format

An object of class PairSummaries.

Details

An object of class PairSummaries.

Examples

data(Endosymbionts_Pairs02)

Endosymbionts_Pairs03 11

Endosymbionts_Pairs03 Example predicted pairs

Description

An object of class PairSummaries where blocks have been expanded and competitors have been
rejected.

Usage

data("Endosymbionts_Pairs03")

Format

An object of class PairSummaries.

Details

An object of class PairSummaries.

Examples

data(Endosymbionts_Pairs03)

Endosymbionts_Sets A list of disjoint sets.

Description

A named list of disjoint sets representing hypothetical COGs.

Usage

data("Endosymbionts_Sets")

Format

A named list of disjoint sets representing hypothetical COGs.

Details

A named list of disjoint sets representing hypothetical COGs.

Examples

data(Endosymbionts_Sets)

12 EstimRearrScen

Endosymbionts_Synteny A synteny object

Description

An object of class Synteny.

Usage

data("Endosymbionts_Synteny")

Format

An object of class Synteny.

Details

An object of class Synteny.

Examples

data(Endosymbionts_Synteny)

EstimRearrScen Estimate Genome Rearrangement Events with Double Cut and Join
Operations

Description

Take in a Synteny object and return predicted rearrangement events.

Usage

EstimRearrScen(SyntenyObject, NumRuns = -1,
Mean = FALSE, MinBlockLength = -1,
Verbose = TRUE)

Arguments

SyntenyObject Synteny object, as obtained from running FindSynteny. Expected input is
unichromosomal sequences, though multichromosomal sequences are supported.

NumRuns Numeric; Number of times to simulate scenarios. The default value of -1 (and all
non-positive values) runs each analysis for

√
b iterations, where b is the number

of unique breakpoints.

EstimRearrScen 13

Mean Logical; If TRUE, returns the mean number of inversions and transpositions
found. If FALSE, returns the scenario corresponding to the minimum total
number of operations across all runs. This parameter only affects the number
of inversions and transpositions reported; the specific scenario returned is one
of the runs that resulted in a minimum value.

MinBlockLength Numeric; Minimum size of syntenic blocks to use for analysis. The default value
accepts all blocks. Set to a larger value to ignore sections of short mutations that
could be the result of SNPs or other small-scale mutations.

Verbose Logical; indicates whether or not to display a progress bar and print the time
difference upon completion.

Details

EstimRearrScen is an implementation of the Double Cut and Join (DCJ) method for analyzing
large scale mutation events.

The DCJ model is commonly used to model genome rearrangement operations. Given a genome,
we can create a connected graph encoding the order of conserved genomic regions. Each syntenic
region is split into two nodes, with one encoding the beginning and one encoding the end (beginning
and end defined relative to the direction of transcription). Each node is then connected to the two
nodes it is adjacent to in the genome.

For example, given a genome with 3 syntenic regions a − b − c such that b is transcribed in the
opposite direction relative to a, c, our graph would consist of nodes and edges a1− a2− b2− b1−
c1− c2.

Given two genomes, we derive syntenic regions between the two samples and then construct two of
these graph structures. A DCJ operation is one that cuts two connections of a common color and
creates two new edges. The goal of the DCJ model is to rearrange the graph of the first genome into
the second genome using DCJ operations. The DCJ distance is defined as the minimum number of
DCJ operations to transform one graph into another.

It can be easily shown that inversions can be performed with a single DCJ operation, and block
interchanges/order rearrangements can be performed with a sequence of two DCJ operations. DCJ
distance defines a metric space, and prior work has demonstrated algorithms for fast computation
of the DCJ distance.

However, DCJ distance inherently incentivizes inversions over block interchanges due to the former
requiring half as many DCJ operations. This is a strong assumption, and there is no evidence to
support gene order rearrangements occuring half as often as gene inversions.

This implementation incentivizes minimum number of total events rather than total number of DCJs.
As the search space is large and multiple sequences of events can be equally parsimonious, this algo-
rithm computes multiple scenarios with random sequences of operations to try to find the minimum
amount of events. Users can choose to receive the best found solution or the mean number of events
from all solutions.

Value

An NxN matrix of lists with the same shape as the input Synteny object. This is wrapped into a
GenRearr object for pretty printing.

The diagonal corresponds to total sequence length of the corresponding genome.

14 EstimRearrScen

In the upper triangle, entry [i,j] corresponds to the percent hits between genome i and genome j.
In the lower triangle, entry [i,j] contains a List object with 5 properties:

• $Inversions and $Transpositions contain the (Mean/min) number of estimated inversions
and transpositions (resp.) between genome i and genome j.

• $pct_hits contains percent hits between the genomes.

• $Scenario shows the sequence of events corresponding to the minimum rearrangement sce-
nario found. See below for details.

• $Key provides a mapping between syntenic blocks and genome positions. See below for de-
tails.

The print.GenRearr method prints this data out as a matrix, with the diagonal showing the number
of chromosomes and the lower triangle displaying xI,yT, where x,y the number of inversions and
transpositions (resp.) between the corresponding entries.

The $Scenario entry describes a sequences of steps to rearrange one genome into another, as
found by this algorithm. The goal of the DCJ model is to rearrange the second genome into the
first. Thus, with N syntenic regions total, we can arbitrarily choose the syntenic blocks in genome 1
to be ordered 1,2,...,N, and then have genome 2 numbers relative to that.

As an example, suppose genome 1 has elements A B E(r) G and genome 2 has elements E B(r)
A(r) G, with X(r) denoting block X has reversed direction of transcription. We can then arbitrarily
assign blocks to numbers such that genome 1 is (1 2 3 4) and genome 2 is (3 -2 -1 4), where a
negative indicates reversed direction of transcription relative to the corresponding syntenic block in
genome 1.

Each entry in $Scenario details an operation, the result after that operation, and the number of
blocks involved in the operation. If we reversed the middle two entries of genome 2, the entry in
$Scenario would be:

inversion: 3 1 2 4 { 2 }

Here we inverted the whole block (-2 -1) into (1 2). We could then finish the rearrangement by
performing a transposition to move block 3 between 2 and 4. The entries of $Scenario in this case
would be the following:

Original: 3 -2 -1 4

inversion: 3 1 2 4 { 2 }

block interchange: 1 2 3 4 { 3 }

Step 1 is the original state of genome 2, step 2 inverts 2 elements to arrive at (3 1 2 4), and then
step 3 moves one element to arrive at (1 2 3 4).

It is important to note that the numbered genomic regions in $Scenario are not genes, they are
blocks of conserved syntenic regions between the genomes. These blocks may not match up with
the original blocks from the Synteny object, since some are combined during pre-processing to
expedite calculations.

$Key is a mapping between these numbered regions and the original genomic regions. This is a 5
column matrix with the following columns (in order):

1. start1: Nucleotide position for the first nucleotide in of the syntenic region on genome 1.

2. start2: Same as start1, but for genome 2

3. length: Length of block, in nucleotides

ExampleStreptomycesData 15

4. rel_direction_on_2: 1 if the blocks have the same transcriptonal direction on both genomes,
and 0 if the direction is reversed in genome 2

5. index1: Label of the genetic region used in $Scenario output

Author(s)

Aidan Lakshman (<ahl27@pitt.edu>)

References

Friedberg, R., Darling, A. E., & Yancopoulos, S. (2008). Genome rearrangement by the double cut
and join operation. Bioinformatics, 385-416.

See Also

FindSynteny

Synteny

Examples

db <- system.file("extdata", "Influenza.sqlite", package="DECIPHER")
synteny <- FindSynteny(db)
synteny

rearrs <- EstimRearrScen(synteny)

rearrs # view whole object
rearrs[[2,1]] # view details on Genomes 1 and 2

ExampleStreptomycesData

Example ProtWeaver Input Data from Streptomyces Species

Description

Data from Streptomyces species to test ProtWeaver functionality.

Usage

data("ExampleStreptomycesData")

Format

The data contain two elements, Genes and Tree. Genes is a list of presence/absence vectors in the
input required for ProtWeaver. Tree is a species tree used for additional input.

16 ExtractBy

Details

This dataset contains a number of Clusters of Orthologous Genes (COGs) and a species tree for use
with ProtWeaver. This dataset showcases an example of using ProtWeaver with a list of vectors.
Entries in each vector are formatted correctly for use with co-localization prediction. Each COG i
contains entries of the form a_b_c, indicating that the gene was found in genome a on chromosome
b, and was at the c’th location. The original dataset is comprised of 301 unique genomes.

See Also

ProtWeaver

Examples

exData <- get(data("ExampleStreptomycesData"))
pw <- ProtWeaver(exData$Genes)
Subset isn't necessary but is faster for a working example
predict(pw, Subset=1:10, MySpeciesTree=exData$Tree)

ExtractBy Extract and organize DNAStringSetss.

Description

Return organized DNAStringSets based on three currently supported object combinations. First re-
turn a single DNAStringSet of feature sequences from a DFrame of genecalls and a DNAStingSet of
the source assembly. Second return a list of DNAStringSets of predicted pairs from a PairSummaries
object and a character string of the location of a DECIPHER SQLite database. Third return a list of
DNAStringSets of predicted single linkage communities from a PairSummaries object, a char-
acter string of the location of a DECIPHER SQLite database, and a list of identifiers generated by
DisjointSet.

Usage

ExtractBy(x,
y,
z,
Verbose = FALSE)

Arguments

x A PairSummaries object, or if y is a DNAStringSet, a DFrame of gene calls
such as one generated by gffToDataFrame.

y A character vector of length 1 indicating the location of a DECIPHER SQLite
database. Or, if x is a DFrame, a DNAStringSet of the assembly the gene calls
are called from.

z Optional; a list of identifiers generated by DisjointSet. Or any list built along
a similar format with identifiers paired to the PairSummaries object.

ExtractBy 17

Verbose Logical indicating whether to print progress bars and messages. Defaults to
FALSE.

Details

All sequences are forced into the same direction based on the Strand column supplied by either the
gene calls DFrame specified by x, or the GeneCalls attribute of the PairSummaries object specified
by y.

Value

Return a DNAStringSet, or list of DNAStringSets arranged depending upon the objects supplied.
See description.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

FindSynteny, Synteny-class, PairSummaries, DisjointSet

Examples

DBPATH <- system.file("extdata",
"Endosymbionts.sqlite",
package = "SynExtend")

data("Endosymbionts_Pairs03", package = "SynExtend")
data("Endosymbionts_Sets", package = "SynExtend")

extract the first 10 disjoint sets
Sets <- ExtractBy(x = Endosymbionts_Pairs03,

y = DBPATH,
z = Endosymbionts_Sets[1:10],
Verbose = TRUE)

extract just the pairs
Sets <- ExtractBy(x = Endosymbionts_Pairs03,

y = DBPATH,
Verbose = TRUE)

18 FindSets

FindSets Find all single linkage clusters in an undirected pairs list.

Description

Take in a pair of vectors representing the columns of an undirected pairs list and return the single
linkage clusters.

Usage

FindSets(p1,
p2,
Verbose = FALSE)

Arguments

p1 Column 1 of a pairs matrix or list.

p2 Column 2 of a pairs matrix or list.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

Details

FindSets uses a version of the union-find algorithm to collect single linkage clusters from a pairs
list. Currently meant to be used inside a wrapper function, but left exposed for user convenience.

Value

A two column matrix with the first column being input nodes, and the second the node representing
a single linkage cluster.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

PairSummaries

Examples

set.seed(1986)
m <- cbind(as.integer(sample(30, size = 25,

replace = TRUE)),
as.integer(sample(35, size = 25,

replace = TRUE)))

Levs <- unique(c(m[, 1],

Generic 19

m[, 2]))
m <- cbind("1" = as.integer(factor(x = m[, 1L],

levels = Levs)),
"2" = as.integer(factor(x = m[, 2L],

levels = Levs)))
z <- FindSets(p1 = m[, 1],

p2 = m[, 2])

Generic Model for predicting PID based on k-mer statistics

Description

Though the function PairSummaries provides an argument allowing users to ask for alignments,
given the time consuming nature of that process on large data, models are provided for predicting
PIDs of pairs based on k-mer statistics without performing alignments.

Usage

data("Generic")

Format

The format is an object of class “glm”.

Details

A model for predicting the PID of a pair of sequences based on the k-mers that were used to link
the pair.

Examples

data(Generic)

GetProtWebData.ProtWeb

Extract information from a ProtWeb object

Description

ProtWeb objects are outputted from predict.ProtWeaver.

This function extracts the underlying data from the object.

Usage

S3 method for class 'ProtWeb'
GetProtWebData(x, AsDf=FALSE, ...)

20 GetProtWebData.ProtWeb

Arguments

x A ProtWeb object

AsDf Should data be printed as a pairwise entry? If TRUE, returns a matrix with three
columns, where the first two columns define the pair of genes/proteins and the
third column defines the prediction/score. If FALSE, returns an adjacency matrix
encoding the same information (but may be sparse depending on how many
predictions were made in the original predict call.)

... Additional parameters for consistency with generic.

Details

predict.ProtWeaver returns a ProtWeb object, which bundles some methods to make formatting
and printing of results slightly nicer. This method extracts data form the ProtWeb object.

If AsDf=TRUE, the return data is a 3xN data.frame, with columns 3 showing the prediction for the
pair of genes/proteins specified in columns 1 and 2. This format is when predictions are made on
small number of pairs (meaning the resulting adjacency matrix is sparse).

If AsDf=FALSE, the return data is a NxN adjacency matrix, with entry i,j containing the prediction
for genes i and j.

Value

Either a data.frame or a matrix.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

See Also

predict.ProtWeaver

Examples

##############
Prediction with built-in model and data
###############

exData <- get(data("ExampleStreptomycesData"))

Subset isn't necessary but is faster for a working example
pw <- ProtWeaver(exData$Genes[1:10])

protweb <- predict(pw, method='Jaccard')

print out results as an adjacency matrix
GetProtWebData(protweb)

print out results as a pairwise data.frame
GetProtWebData(protweb, AsDf=TRUE)

gffToDataFrame 21

gffToDataFrame Generate a DataFrame of gene calls from a gff3 file

Description

Generate a DataFrame of gene calls from a gff3 file

Usage

gffToDataFrame(GFF,
AdditionalAttrs = NULL,
AdditionalTypes = NULL,
RawTableOnly = FALSE,
Verbose = FALSE)

Arguments

GFF A url or filepath specifying a gff3 file to import

AdditionalAttrs

A vector of character strings to designate the attributes to pull. Default Attributes
include: “ID”, “Parent”, “Name”, “gbkey”, “gene”, “product”, “protein_id”,
“gene_biotype”, “transl_table”, and “Note”.

AdditionalTypes

A vector of character strings to query from the the “Types” column. Default
types are limited to “Gene” and “Pseudogene”, but any possible entry for “Type”
in a gff3 format can be added, such as “rRNA”, or “CRISPR_REPEAT”.

RawTableOnly Logical specifying whether to return the raw imported GFF without complex
parsing. Remains as a holdover from function construction and debugging. For
simple gff3 import see rtracklayer::import.

Verbose Logical specifying whether to print a progress bar and time difference.

Details

Import a gff file into a rectangular parsable object.

Value

A DataFrame with relevant information extracted from a GFF.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

22 LinkedPairs

Examples

ImportedGFF <- gffToDataFrame(GFF = system.file("extdata",
"GCF_021065005.1_ASM2106500v1_genomic.gff.gz",

package = "SynExtend"),
Verbose = TRUE)

LinkedPairs Tables of where syntenic hits link pairs of genes

Description

Syntenic blocks describe where order is shared between two sequences. These blocks are made up
of exact match hits. These hits can be overlayed on the locations of sequence features to clearly
illustrate where exact sequence similarity is shared between pairs of sequence features.

Usage

S3 method for class 'LinkedPairs'
print(x,

quote = FALSE,
right = TRUE,
...)

Arguments

x An object of class LinkedPairs.

quote Logical indicating whether to print the output surrounded by quotes.

right Logical specifying whether to right align strings.

... Other arguments for print.

Details

Objects of class LinkedPairs are stored as square matrices of list elements with dimnames derived
from the dimnames of the object of class ”Synteny” from which it was created. The diagonal of
the matrix is only filled if OutputFormat ”Comprehensive” is selected in NucleotideOverlap,
in which case it will be filled with the gene locations supplied to GeneCalls. The upper triangle
is always filled, and contains location information in nucleotide space for all syntenic hits that link
features between sequences in the form of an integer matrix with named columns. ”QueryGene” and
”SubjectGene” correspond to the integer rownames of the supplied gene calls. ”QueryIndex” and
”SubjectIndex” correspond to ”Index1” and ”Index2” columns of the source synteny object position.
Remaining columns describe the exact positioning and size of extracted hits. The lower triangle is
not filled if OutputFormat ”Sparse” is selected and contains relative displacement positions for the
’left-most’ and ’right-most’ hit involved in linking the particular features indicated in the related
line up the corresponding position in the upper triangle.

The object serves only as a simple package for input data to the PairSummaries function, and as
such may not be entirely user friendly. However it has been left exposed to the user should they find
this data interesting.

NucleotideOverlap 23

Value

An object of class ”LinkedPairs”.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

NucleotideOverlap Tabulating Pairs of Genomic Sequences

Description

A function for concisely tabulating where genomic features are connected by syntenic hits.

Usage

NucleotideOverlap(SyntenyObject,
GeneCalls,
LimitIndex = FALSE,
AcceptContigNames = TRUE,
Verbose = FALSE)

Arguments

SyntenyObject An object of class “Synteny” built from the FindSynteny in the package DECIPHER.

GeneCalls A named list of objects of class “DFrame” built from gffToDataFrame, ob-
jects of class “GRanges” imported from rtracklayer::import, or objects of
class “Genes” created from the DECIPHER function FindGenes. “DFrame”s built
by “gffToDataFrame” can be used directly, while “GRanges” objects may also
be used with limited functionality. Using a “GRanges” object will force all
alignments to nucleotide alignments. Objects of class “Genes” generated by
FindGenes function equivalently to those produced by gffToDataFrame. Us-
ing a “GRanges” object will force LimitIndex to TRUE.

LimitIndex Logical indicating whether to limit which indices in a synteny object to query.
FALSE by default, when TRUE only the first sequence in all selected identifiers
will be used. LimitIndex can be used to skip analysis of plasmids, or solely
query a single chromosome.

AcceptContigNames

Match names of contigs between gene calls object and synteny object. Where
relevant, the first white space and everything following are removed from contig
names. If “TRUE”, NucleotideOverlap assumes that the contigs at each position
in the synteny object and “GeneCalls” object are in the same order. Is automat-
ically set to TRUE when “GeneCalls” are of class “GRanges”.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

24 PairSummaries

Details

Builds a matrix of lists that contain information about linked pairs of genomic features.

Value

An object of class “LinkedPairs”. “LinkedPairs” is fundamentally just a list in the form of a matrix.
The lower triangle of the matrix is populated with matrices that contain all kmer hits from the
“Synteny” object that link features from the “GeneCalls” object. The upper triangle is populated by
matrices of the summaries of those hits by feature. The diagonal is populated by named vectors of
the lengths of the contigs, much like in the “Synteny” object. The “LinkedPairs” object also contains
a “GeneCalls” attribute that contains the user supplied features in a slightly more trimmed down
form. This allows users to only need to supply gene calls once and not again in the “PairSummaries”
function.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

FindSynteny, Synteny-class

Examples

data("Endosymbionts_GeneCalls", package = "SynExtend")
data("Endosymbionts_Synteny", package = "SynExtend")

Links <- NucleotideOverlap(SyntenyObject = Endosymbionts_Synteny,
GeneCalls = Endosymbionts_GeneCalls,
LimitIndex = FALSE,
Verbose = TRUE)

PairSummaries Summarize connected pairs in a LinkedPairs object

Description

Takes in a “LinkedPairs” object and gene calls, and returns a data.frame of paired features.

Usage

PairSummaries(SyntenyLinks,
DBPATH,
PIDs = FALSE,
Score = FALSE,
IgnoreDefaultStringSet = FALSE,
Verbose = FALSE,
Model = "Generic",

PairSummaries 25

DefaultTranslationTable = "11",
AcceptContigNames = TRUE,
OffSetsAllowed = NULL,
Storage = 1,
...)

Arguments

SyntenyLinks A LinkedPairs object. In previous versions of this function, a GeneCalls ob-
ject was also required, but this object is now carried forward from NucleotideOverlap
inside the LinkedPairs object.

DBPATH A SQLite connection object or a character string specifying the path to the
database file constructed from DECIPHER’s Seqs2DB function. This path is
always required as “PairsSummaries” always computes the tetramer distance
between paired sequences.

PIDs Logical indicating whether to provide a PID for each pair. If TRUE all pairs will
be aligned using DECIPHER’s AlignProfiles. This step can be time consum-
ing, especially for large numbers of pairs. Default is FALSE.

Score Logical indicating whether to provide a length normalized score with DECI-
PHER’s ScoreAlignment function. If TRUE all pairs will be aligned using DE-
CIPHER’s AlignProfiles. This step can be time consuming, especially for
large numbers of pairs. Default is FALSE.

IgnoreDefaultStringSet

Logical indicating alignment type preferences. If FALSE (the default) pairs that
can be aligned in amino acid space will be aligned as an AAStringSet. If TRUE
all pairs will be aligned in nucleotide space. For PairSummaries to align the
translation of a pair of sequences, both sequences must be tagged as coding in
the “GeneCalls” object, and be the correct width for translation.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

Model A character string specifying a model to use to predict PIDs without perform-
ing an alignment. By default this argument is “Generic” specifying a generic
PID prediction model based on PIDs computed from a randomly selected set of
genomes. Currently no other models are included. Users may also supply their
own model of type “glm” if they so desire in the form of an RData file. This
model will need to take in some, or of the columns of statistics per pair that
PairSummaries supplies.

DefaultTranslationTable

A character used to set the default translation table for translate. Is passed to
getGeneticCode. Used when no translation table is specified in the “GeneCalls”
object.

AcceptContigNames

Match names of contigs between gene calls object and synteny object. Where
relevant, the first white space and everything following are removed from contig
names. If TRUE, PairSummaries assumes that the contigs at each position in the
synteny object and “GeneCalls” object are in the same order. Is automatically

26 PairSummaries

set to TRUE when “GeneCalls” are of class “GRanges”. Is currently TRUE by
default.

OffSetsAllowed Defaults to NULL. Supplying an integer vector will indicate gap sizes to attempt
to fill. A value of 2 will attempt to span gaps of size 1. If a vector larger than 1 is
provided, i.e. c(2, 3), will attempt to query all gap sizes implied by the vector,
in this case gaps of size 1 and 2.

Storage Numeric indicating the approximate size a user wishes to allow for holding
StringSets in memory to extract gene sequences, in “Gigabytes”. The lower
Storage is set, the more likely that PairSummaries will need to reaccess StringSets
when extracting gene sequences. The higher Storage is set, the more sequences
PairSummaries will attempt to hold in memory, avoiding the need to re-access
the source database many times. Set to 1 by default, indicating that PairSummaries
can store a “Gigabyte” of sequences in memory at a time.

... Arguments to be passed to AlignProfiles, and DistanceMatrix.

Details

The LinkedPairs object generated by NucleotideOverlap is a container for raw data that de-
scribes possible orthologous relationships, however ultimate assignment of orthology is up to user
discretion. PairSummaries generates a clear table with relevant statistics for a user to work with as
they choose. The option to align all pairs, though onerous can allow users to apply a hard threshold
to predictions by PID, while built in models can allow more expedient thresholding from predicted
PIDs.

Value

A data.frame of class “data.frame” and “PairSummaries” of paired genes that are connected by syn-
tenic hits. Contains columns describing the k-mers that link the pair. Columns “p1” and “p2” give
the location ids of the the genes in the pair in the form “DatabaseIdentifier_ContigIdentifier_GeneIdentifier”.
“ExactMatch” provides an integer representing the exact number of nucleotides contained in the
linking k-mers. “TotalKmers” provides an integer describing the number of distinct k-mers linking
the pair. “MaxKmer” provides an integer describing the largest k-mer that links the pair. A column
titled “Consensus” provides a value between zero and 1 indicating whether the kmers that link a
pair of features are in the same position in each feature, with 1 indicating they are in exactly the
same position and 0 indicating they are in as different a position as is possible. The “Adjacent”
column provides an integer value ranging between 0 and 2 denoting whether a feature pair’s direct
neighbors are also paired. Gap filled pairs neither have neighbors, or are included as neighbors. The
“TetDist” column provides the euclidean distance between oligonucleotide - of size 4 - frequences
between predicted pairs. “PIDType” provides a character vector with values of “NT” where either
of the pair indicates it is not a translatable sequence or “AA” where both sequences are translatable.
If users choose to perform pairwise alignments there will be a “PID” column providing a numeric
describing the percent identity between the two sequences. If users choose to predict PIDs using
their own, or a provided model, a “PredictedPID” column will be provided.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

plot.ProtWeb 27

See Also

FindSynteny, Synteny-class, NucleotideOverlap

Examples

DBPATH <- system.file("extdata",
"Endosymbionts.sqlite",
package = "SynExtend")

data("Endosymbionts_LinkedFeatures", package = "SynExtend")

Pairs <- PairSummaries(SyntenyLinks = Endosymbionts_LinkedFeatures,
PIDs = FALSE,
DBPATH = DBPATH,
Verbose = TRUE)

plot.ProtWeb Plot predictions in a ProtWeb object

Description

ProtWeb objects are outputted from predict.ProtWeaver.

This function plots the predictions in the object using a force-directed embedding of connections in
the adjacency matrix.

This function is still a work in progress.

Usage

S3 method for class 'ProtWeb'
plot(x, NumSims=10,

Gravity=0.05, Coulomb=0.1, Connection=5,
MoveRate=0.25, Cutoff=0.2, ColorPalette=topo.colors,
Verbose=TRUE, ...)

Arguments

x A ProtWeb object. See predict.ProtWeaver

NumSims Number of iterations to run the model for.

Gravity Strength of Gravity force. See ’Details’.

Coulomb Strength of Coulomb force. See ’Details’.

Connection Strength of Connective force. See ’Details’.

MoveRate Controls how far each point moves in each iteration.

Cutoff Cutoff value; if abs(val) < Cutoff, that Connection is shrunk to zero.

28 plot.ProtWeb

ColorPalette Color palette for graphing. Valid inputs are any palette available in palette.pals().
See palette for more info.

Verbose Logical indicating whether to print progress bars and messages. Defaults to
TRUE.

... Additional parameters for consistency with generic.

Details

This function plots the ProtWeb object using a force-directed embedding. This embedding has three
force components:

• Gravity Force: Attractive force pulling nodes towards (0,0)

• Coulomb Force: Repulsive force pushing close nodes away from each other

• Connective Force: Tries to push node connections to equal corresponding values in the adja-
cency matrix

The parameters in the function are sufficient to get an embedding, though users are welcome to
try to tune them for a better visualization. This function is meant to aid with visualization of the
adjacency matrix, not for concrete analyses of clusters.

The function included in this release is early stage. Next release cycle will update this function with
an updated version of this algorithm to improve plotting, visualization, and runtime.

Value

No return value; creates a plot in the graphics window.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

See Also

predict.ProtWeaver

GetProtWebData.ProtWeb

Examples

exData <- get(data("ExampleStreptomycesData"))
pw <- ProtWeaver(exData$Genes)

Subset isn't necessary but is faster for a working example
Same w/ method='Jaccard'
protweb <- predict(pw, 'Jaccard', subset=1:50)

plot(protweb)

predict.ProtWeaver 29

predict.ProtWeaver Make predictions with ProtWeaver objects

Description

This S3 method predicts a functional association network from a ProtWeaver object. This returns
an object of type ProtWeb, which is essentially an adjacency matrix with some extra S3 methods to
make printing cleaner.

Usage

S3 method for class 'ProtWeaver'
predict(object, Method='Ensemble',

Subset=NULL, NumCores=1,
MySpeciesTree=NULL, PretrainedModel=NULL,
RawZScores=FALSE, NoPrediction=FALSE,
ReturnRawData=FALSE, Verbose=TRUE, ...)

Arguments

object A ProtWeaver object

Method Method to use for prediction. See ’Details’.

Subset Subset of data to predict on. This can either be a vector or a 2xN matrix.
If a vector, prediction proceeds for all possible pairs of elements specified in the
vector (either by name, for character vector, or by index, for numeric vector).
For example, subset=1:3 will predict for pairs (1,2), (1,3), (2,3).
If a matrix, subset is interpreted as a matrix of pairs, where each row of the ma-
trix specifies a pair to evaluate. These can also be specifed by name (character)
or by index (numeric).
subset=cbind(c(1,1,2), c(2,3,3)) produces equivalent functionality to subset=1:3.

NumCores Number of cores to use for methods that support multithreaded execution. Cur-
rently only supported for methods 'ProfDCA' and 'Ensemble'. Setting to a
negative value will use one less than the value of detectCores(), or one core
if the number of available cores cannot be determined. See Note for more infor-
mation. This parameter has no effect on Windows due to reliance on forking via
mclapply.

MySpeciesTree Phylogenetic tree of all genomes in the dataset. Required for Method='Behdenna',
and can improve predictions for other methods. 'Behdenna' requires a rooted,
bifurcating tree (other values of Method can handle arbitrary trees).

PretrainedModel

A pretrained model for use with ensemble predictions. If unspecified when
Method='Ensemble', the program will use built-in models (see BuiltInEnsembles).
See the examples for how to train an ensemble method to pass to PretrainedModel.
Has no effect if Method != 'Ensemble'.

30 predict.ProtWeaver

RawZScores For methods that return z-scores, should raw scores be returned? If FALSE,
instead returns normalized absolute value of predictions. These tend to be better
predictions.
Currently, only Method='Behdenna' uses this parameter.

NoPrediction For Method='Ensemble', should data be returned prior to making predictions?
If TRUE, this will instead return a dataframe (data.frame) with predictions from
each algorithm for each pair. This dataframe is typically used to train an ensem-
ble model.
If FALSE, ProtWeaver will return predictions for each pair (using user model if
provided or a built-in otherwise).

ReturnRawData Internal parameter used for ensemble predictions. If TRUE, returns predic-
tions without formatting them into a ProtWeb object. Users should specify
NoPrediction=TRUE rather than use this parameter (see Details).

Verbose Logical indicating whether to print progress bars and messages. Defaults to
TRUE.

... Additional parameters for other predictors and consistency with generic.

Details

predict.ProtWeaver wraps several methods to create an easy interface for multiple prediction
types. The following values of Method are currently supported:

• 'Jaccard': Jaccard distance of PA profiles

• 'Hamming': Hamming distance of PA profiles

• 'MutualInformation': MI of PA profiles

• 'ProfDCA': Direct Coupling Analysis of PA profiles

• 'Behdenna': Analysis of Gain/Loss events following Behdenna et al. (2016)

• 'Coloc': Co-localization analysis

• 'MirrorTree': MirrorTree

• 'ContextTree': ContextTree

(PA = Presence/Absence)

This returns a ProtWeb object, an S3 class that makes formatting and printing of results slightly
nicer. Data can be extracted form the ProtWeb object with:

GetProtWebData(ProtWebObject, AsDf=c(T,F))

Different methods require different types of input. The constructor ProtWeaver will notify the user
which methods are runnable with the given data. Note that method Behdenna requires a species
tree, which must be bifurcating. Method Ensemble automatically selects the methods that can be
run with the given input data.

See ProtWeaver for more information on input data types.

Value

Returns a ProtWeb object. See GetProtWebData for more info.

predict.ProtWeaver 31

Note

Note that the pairwise associations are stored in a matrix, meaning that if the ProtWeaver object
contains 100 entries, the output ProtWeb object contains a 100x100 matrix. Users should be advised
that predicting too many pairs can lead to vector memory exhaustion errors. On my machine,
ProtWeaver supports predictions on up to around 53, 0002 pairs (meaning all possible pairs between
53,000 proteins/genes). Next release will add more memory efficient storage to further increase
this limit, though the memory capacity can never be better than O(P 2), with P the number of
proteins/genes.

NumCores only uses 1 less core than is detected, or 1 core if detectCores() cannot detect the
number of available cores. This is because of a recurring issue on my machine where the R session
takes all available cores and is then locked out of forking processes, with the only solution to restart
the entire R session. This may be an issue specific to ARM Macs, but out of an abundance of
caution I’ve made the default setting to be slightly slower but guarantee completion rather than risk
bricking a machine.

More models will be implemented in the future. Planned models for next release include:

• Random Forests for Ensemble predictions

• XGBoost for Ensemble predictions

• Normalized Phylogenetic Profiles

• SVDPhy

• DCA at the residue level (Weigt et al. 2009)

Feel free to contact me regarding other models you would like to see added.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

References

Behdenna, A., et al., Testing for Independence between Evolutionary Processes. Systematic Biol-
ogy, 2016. 65(5): p. 812-823.

Franceschini, A., et al., SVD-phy: improved prediction of protein functional associations through
singular value decomposition of phylogenetic profiles. Bioinformatics, 2016. 32(7): p. 1085-1087.

Fukunaga, T. and W. Iwasaki, Inverse Potts model improves accuracy of phylogenetic profiling.
Bioinformatics, 2022.

Lokhov, A.Y., et al., Optimal structure and parameter learning of Ising models. Science advances,
2018. 4(3): p. e1700791.

Pazos, F. and A. Valencia, Similarity of phylogenetic trees as indicator of protein–protein interac-
tion. Protein Engineering, Design and Selection, 2001. 14(9): p. 609-614.

Pazos, F., et al., Assessing protein co-evolution in the context of the tree of life assists in the predic-
tion of the interactome. J Mol Biol, 2005. 352(4): p. 1002-15.

Sadreyev, I.R., et al., PhyloGene server for identification and visualization of co-evolving proteins
using normalized phylogenetic profiles. Nucleic Acids Research, 2015. 43(W1): p. W154-W159.

32 predict.ProtWeaver

Sato, T., et al., The inference of protein-protein interactions by co-evolutionary analysis is improved
by excluding the information about the phylogenetic relationships. Bioinformatics, 2005. 21(17):
p. 3482-9.

Sato, T., et al., Partial correlation coefficient between distance matrices as a new indicator of
protein-protein interactions. Bioinformatics, 2006. 22(20): p. 2488-92.

Weigt, M., et al., Identification of direct residue contacts in protein-protein interaction by message
passing. Proceedings of the National Academy of Sciences, 2009. 106(1): p. 67-72.

See Also

ProtWeaver

GetProtWebData

Examples

##############
Prediction with built-in model and data
###############

exData <- get(data("ExampleStreptomycesData"))
pw <- ProtWeaver(exData$Genes[1:50])

Subset isn't necessary but is faster for a working example
protweb1 <- predict(pw, Subset=1:10, MySpeciesTree=exData$Tree)

print out results as an adjacency matrix
GetProtWebData(protweb1)

###############
Training own ensemble model
###############

datavals <- predict(pw, NoPrediction=TRUE)

actual_values <- sample(c(0,1), nrow(datavals), replace=TRUE)
This example just picks random numbers
Do not do this for your own models

Make sure the actual values correspond to the right pairs!
datavals[,'y'] <- actual_values
myModel <- glm(y~., datavals[,-c(1,2)], family='binomial')

testProtWeaverObject <- ProtWeaver(exData$Genes[51:60])
protweb2 <- predict(testProtWeaverObject,

PretrainedModel=myModel)

Print result as a 3xN matrix of pairwise scores
GetProtWebData(protweb2, AsDf=TRUE)

ProtWeaver 33

ProtWeaver ProtWeaver: Predicting Protein Functional Association Networks

Description

ProtWeaver is an S3 class with methods for predicting functional association using protein or gene
data. ProtWeaver implements several methods utilized in the literature, with many more planned
for future implementation. For details on predictions, see predict.ProtWeaver.

Usage

ProtWeaver(ListOfData, NoWarn=FALSE)

Arguments

ListOfData A list of gene data, where each entry corresponds to information on a particular
gene. List must contain either dendrograms or vectors, and cannot contain a
mixture. If list is composed of dendrograms, each dendrogram is a gene tree
for the corresponding entry. If list is composed of vectors, vectors should be
numeric or character vectors denoting the genomes containing that gene.

NoWarn Several algorithms depend on having certain data. When a ProtWeaver object
is initialized, it automatically selects which algorithms can be used given the
input data. By default, ProtWeaver will notify the user of algorithms that cannot
be used with warnings. Setting NoWarn=TRUE will suppress these messages.

Details

ProtWeaver expects input data to be a list. All entries must be one of the following:

1. ListOfData[[i]] = c('ID#1', 'ID#2', ..., 'ID#k')

2. ListOfData[[i]] = c('i1_d1_p1', 'i2_d2_p2', ..., 'ik_dk_pk')

3. ListOfData[[i]] = dendrogram(...)

In (1), each ID#i corresponds to the unique identifier for genome #i. For entry #j in the list, the
presence of ’ID#i’ means genome #i has an ortholog for gene/protein #j.

Case (2) is the same as (1), just with the formatting of names slightly different. Each entry is of the
form i_d_p, where i is the unique identifier for the genome, d is which chromosome the ortholog is
located, and p is what position the ortholog appears in on that chromosome. p must be a numeric,
while the other entries can be any value.

Case (3) expects gene trees for each gene, with labeled leaves corresponding to each source genome.
If ListOfData is in this format, taking labels(ListOfData[[i]]) should produce a character
vector that matches the format of either (2) or (1).

See the Examples section for illustrative examples.

ProtWeaver requires input of scenario (3) to use MirrorTree or ContextTree, and requires input of
scenario (2) (or (3) with leaves labeled according to (2)) for co-localization analyses.

34 ProtWeaver

Note that ALL entries must belong to the same category–a combination of character vectors and
dendrograms is not allowed.

Prediction of a functional association network is done using predict(ProtWeaverObject). See
predict.ProtWeaver for more information.

Value

Returns a ProtWeaver object.

Author(s)

Aidan Lakshman <ahl27@pitt.edu>

See Also

predict.ProtWeaver, ExampleStreptomycesData, BuiltInEnsembles

Examples

I'm using gene to mean either a gene or protein

Imagine we have the following 4 genomes:
(each letter denotes a distinct gene)
Genome 1: a b c d
Genome 2: d c e
Genome 3: b a e
Genome 4: a e

We have 5 total genes: (a,b,c,d,e)
a is present in genomes 1, 3, 4
b is present in genomes 1, 3
c is present in genomes 1, 2
d is present in genomes 1, 2
e is present in genomes 2, 3, 4

Constructing a ProtWeaver object according to (1):
l <- list()
l[['a']] <- c('1', '3', '4')
l[['b']] <- c('1', '3')
l[['c']] <- c('1', '2')
l[['d']] <- c('1', '2')
l[['e']] <- c('2', '3', '4')

Each value of the list corresponds to a gene
The associated vector shows which genomes have that gene
pwCase1 <- ProtWeaver(l)

Constructing a ProtWeaver object according to (2):
Here we need to add in the chromosome and the position
As we only have one chromosome,
we can just set that to 1 for all.
Position can be identified with knowledge, or with

SequenceSimilarity 35

FindGenes(...) from DECIPHER.

In this toy case, genomes are small so it's simple.
l <- list()
l[['a']] <- c('1_1_1', '3_1_2', '4_1_1')
l[['b']] <- c('1_1_2', '3_1_1')
l[['c']] <- c('1_1_3', '2_1_2')
l[['d']] <- c('1_1_4', '2_1_1')
l[['e']] <- c('2_1_3', '3_1_3', '4_1_2')

pwCase2 <- ProtWeaver(l)

For Case 3, we just need dendrogram objects for each
l[['a']] <- dendrogram(...)
l[['b']] <- dendrogram(...)
l[['c']] <- dendrogram(...)
l[['d']] <- dendrogram(...)
l[['e']] <- dendrogram(...)

Leaf labels for these will be the same as the
entries in Case 1.

SequenceSimilarity Return a numeric value that represents the similarity between two
aligned sequences as determined by a provided subsitution matrix.

Description

Takes in a DNAStringSet or AAStringSet representing a pairwise alignment and a subsitution
matrix such as those present in PFASUM, and return a numeric value representing sequence similarity
as defined by the substitution matrix.

Usage

SequenceSimilarity(Seqs,
SubMat,
penalizeGapLetter = TRUE,
includeTerminalGaps = TRUE,
allowNegative = TRUE)

Arguments

Seqs A DNAStringSet or AAStringSet of length 2.

SubMat A named matrix representing a substitution matrix. If left “NULL” and “Seqs” is
a AAStringSet, the 40th “PFASUM” matrix is used. If left “NULL” and “Seqs”
is a DNAStringSet, a matrix with only the diagonal filled with “1”’s is used.

36 SequenceSimilarity

penalizeGapLetter

A logical indicating whether or not to penalize Gap-Letter matches. Defaults to
“TRUE”.

includeTerminalGaps

A logical indicating whether or not to penalize terminal matches. Defaults to
“TRUE”.

allowNegative A logical indicating whether or not allow negative scores. Defaults to “TRUE”.
If “FALSE” scores that are returned as less than zero are converted to zero.

Details

Takes in a DNAStringSet or AAStringSet representing a pairwise alignment and a subsitution
matrix such as those present in PFASUM, and return a numeric value representing sequence similarity
as defined by the substitution matrix.

Value

Returns a single numeric.

Author(s)

Erik Wright <ESWRIGHT@pitt.edu> Nicholas Cooley <npc19@pitt.edu>

See Also

AlignSeqs, AlignProfiles, AlignTranslation, DistanceMatrix

Examples

db <- system.file("extdata", "Bacteria_175seqs.sqlite", package = "DECIPHER")
dna <- SearchDB(db, remove = "all")
alignedDNA <- AlignSeqs(dna[1:2])

DNAPlaceholder <- diag(15)
dimnames(DNAPlaceholder) <- list(DNA_ALPHABET[1:15],

DNA_ALPHABET[1:15])

SequenceSimilarity(Seqs = alignedDNA,
SubMat = DNAPlaceholder,
includeTerminalGaps = TRUE,
penalizeGapLetter = TRUE,
allowNegative = TRUE)

SubSetPairs 37

SubSetPairs Subset a “PairSummaries” object.

Description

For a given object of class “PairSummaries”, pairs based on either competing predictions, user
thresholds on prediction statistics, or both.

Usage

SubSetPairs(CurrentPairs,
UserThresholds,
RejectCompetitors = TRUE,
RejectionCriteria = "PID",
WinnersOnly = TRUE,
Verbose = FALSE)

Arguments

CurrentPairs An object of class “PairSummaries”. Can also take in a generic “data.frame”, as
long as the feature naming scheme is the same as that followed by all SynExtend
functions.

UserThresholds A named vector where values indicate a threshold for statistics to be above, and
names designate which statistic to threshold on.

RejectCompetitors

A logical that defaults to “TRUE”. Allowing users to choose to remove compet-
ing predictions. When set to “FALSE”, no competitor rejection is performed.
When “TRUE” all competing pairs with the exception of the best pair as de-
termined by “RejectionCriteria” are rejected. Can additionally be set to a nu-
meric or integer, in which case only competing predictions below that value are
dropped.

RejectionCriteria

A character indicating which column value competitor rejection should refer-
ence. Defaults to “PID”.

WinnersOnly A logical indicating whether or not to return just the pairs that are selected.
Defaults to “TRUE” to return a subset object of class “PairSummaries”. When
“FALSE”, function returns a list of two “PairSummaries” objects, one of the
selected pairs, and the second of the rejected pairs.

Verbose Logical indicating whether or not to display a progress bar and print the time
difference upon completion.

Details

SubSetPairs uses a naive competitor rejection algorithm to remove predicted pairs when nodes are
predicted to be paired to multiple nodes within the same index.

38 SubSetPairs

Value

An object of class “PairSummaries”, or a list of two “PairSummaries” objects.

Author(s)

Nicholas Cooley <npc19@pitt.edu>

See Also

PairSummaries NucleotideOverlap

Examples

data("Endosymbionts_Pairs03", package = "SynExtend")
remove competitors under default conditions
Pairs2 <- SubSetPairs(CurrentPairs = Endosymbionts_Pairs03,

Verbose = TRUE)
THRESH <- c(0.5, 21)
names(THRESH) <- c("Consensus", "ExactMatch")
remove pairs only based on user defined thresholds
Pairs3 <- SubSetPairs(CurrentPairs = Endosymbionts_Pairs03,

UserThresholds = THRESH,
RejectCompetitors = FALSE,
Verbose = TRUE)

Index

∗ GeneCalls
gffToDataFrame, 21

∗ datasets
BuiltInEnsembles, 7
Endosymbionts_GeneCalls, 9
Endosymbionts_LinkedFeatures, 9
Endosymbionts_Pairs01, 10
Endosymbionts_Pairs02, 10
Endosymbionts_Pairs03, 11
Endosymbionts_Sets, 11
Endosymbionts_Synteny, 12
ExampleStreptomycesData, 15
Generic, 19

[.LinkedPairs (LinkedPairs), 22

AlignProfiles, 36
AlignSeqs, 36
AlignTranslation, 36

BlastSeqs, 2
BlockExpansion, 4
BlockReconciliation, 5
BuiltInEnsembles, 7, 29, 34

data.frame, 3, 20, 30
DisjointSet, 8, 17
DistanceMatrix, 36

Endosymbionts_GeneCalls, 9
Endosymbionts_LinkedFeatures, 9
Endosymbionts_Pairs01, 10
Endosymbionts_Pairs02, 10
Endosymbionts_Pairs03, 11
Endosymbionts_Sets, 11
Endosymbionts_Synteny, 12
EstimateRearrangementScenarios

(EstimRearrScen), 12
EstimRearrScen, 12
ExampleStreptomycesData, 15, 34
ExtractBy, 16

FindSets, 8, 18
FindSynteny, 5, 7, 8, 12, 15, 17, 24, 27

Generic, 19
GetProtWebData, 30, 32
GetProtWebData

(GetProtWebData.ProtWeb), 19
GetProtWebData.ProtWeb, 19, 28
gffToDataFrame, 21
glm, 7

LinkedPairs, 22
LinkedPairs-class (LinkedPairs), 22

NucleotideOverlap, 5, 23, 27, 38

PairSummaries, 5, 7, 8, 17, 18, 24, 38
palette, 28
plot.ProtWeb, 27
predict.ProtWeaver, 19, 20, 27, 28, 29, 33,

34
print.LinkedPairs (LinkedPairs), 22
ProtWeaver, 15, 16, 30, 32, 33
ProtWeaver-class (ProtWeaver), 33

SequenceSimilarity, 35
SubSetPairs, 37
Synteny, 12, 15

XStringSet, 2, 3

39

	BlastSeqs
	BlockExpansion
	BlockReconciliation
	BuiltInEnsembles
	DisjointSet
	Endosymbionts_GeneCalls
	Endosymbionts_LinkedFeatures
	Endosymbionts_Pairs01
	Endosymbionts_Pairs02
	Endosymbionts_Pairs03
	Endosymbionts_Sets
	Endosymbionts_Synteny
	EstimRearrScen
	ExampleStreptomycesData
	ExtractBy
	FindSets
	Generic
	GetProtWebData.ProtWeb
	gffToDataFrame
	LinkedPairs
	NucleotideOverlap
	PairSummaries
	plot.ProtWeb
	predict.ProtWeaver
	ProtWeaver
	SequenceSimilarity
	SubSetPairs
	Index

