
Package ‘SANTA’
October 11, 2022

Type Package

Title Spatial Analysis of Network Associations

Version 2.32.0

Date 6 October 2021

Imports graphics, Matrix, methods, stats

Depends R (>= 4.1), igraph

Suggests BiocGenerics, BioNet, DLBCL, formatR, knitr, msm,
org.Sc.sgd.db, markdown, rmarkdown, RUnit

Description This package provides methods for measuring the strength of association between a net-
work and a phenotype. It does this by measuring clustering of the phenotype across the net-
work (Knet). Vertices can also be individually ranked by their strength of association with high-
weight vertices (Knode).

License GPL (>= 2)

LazyLoad yes

VignetteBuilder knitr

biocViews Network, NetworkEnrichment, Clustering

BugReports https://github.com/alexjcornish/SANTA

git_url https://git.bioconductor.org/packages/SANTA

git_branch RELEASE_3_15

git_last_commit b7d20f5

git_last_commit_date 2022-04-26

Date/Publication 2022-10-11

Author Alex Cornish [cre, aut]

Maintainer Alex Cornish <alex.cornish@icr.ac.uk>

R topics documented:
BinGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1

https://github.com/alexjcornish/SANTA


2 BinGraph

CreateGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
DistGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
GraphDiffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
GraphMFPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Knet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Knode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
plot.Knet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
SANTA.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
SpreadHits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Index 19

BinGraph Compute a distance bin matrix from a distance matrix

Description

In order for the Knet or Knode functions to be run on a network, it is necessary to place the raw
distances between each vertex pair into discreet distance bins, as the functions are unable to han-
dle continuous distributions of distances. This is done automatically within the Knet and Knode
functions, but can also be done separately using BinGraph.

Usage

BinGraph(D, nsteps=1000, equal.bin.fill=TRUE, verbose=TRUE)

Arguments

D Numeric matrix, a distance matrix output by DistGraph.

nsteps Integer value, the desired number of bins across which the distances are to be
split. If there are too few unique distances to fill each bin, then fewer bins are
returned.

equal.bin.fill Logical, if TRUE then the function attempts to fill each bin with an equal number
of vertex pairs.

verbose Logical, if TRUE messages about the progress of the function are displayed.

Details

In order for the Knet or Knode functions to be run, the vertex pair distances (as computed by
DistGraph) but be split into bins. This is done as part of the Knet or Knode. However, this step is
often slow for large networks and therefore the BinGraph function is provided separately, in order
to avoid repeat computation.

Each vertex pair is placed into a bin, either ranging from 1 to nsteps, or from 1 to the number of
unique distances.

If equal.bin.fill is FALSE, then the bin each vertex pair is placed into is directly proportional to
the largest vertex pair distance. For example, if the distance between the pair is 25% of the largest
distance and nsteps equals 100, then the vertex pair will be placed into bin 25. However, this can



Compactness 3

create problems when there are a small number of edges with especially large distances, as this can
result in the majority of vertex pairs being placed into a small number of bins. This can reduce
the effectiveness of the Knet and Knode functions. Therefore, when equal.bin.fill is TRUE, the
function attempts to fill each bin with an equal number of vertex pairs. If there are a large number
of tied distances, then the bins may not be filled equally.

Value

Integer matrix with the same dimensions as D.

Author(s)

Alex J. Cornish <a.cornish12@imperial.ac.uk>

See Also

DistGraph

Examples

# create network and calculate the distance matrix using the shortest paths measure
g1 <- barabasi.game(6, directed=FALSE)
plot(g1, layout=layout.fruchterman.reingold)
D1 <- DistGraph(g1, dist.method="shortest.paths")
# place the distances into distance bins
BinGraph(D1, nsteps=100)

# create network and calculate the distance matrix using diffusion kernel-based measure
g2 <- erdos.renyi.game(6, p.or.m=0.5, directed=FALSE)
g2 <- set.edge.attribute(g2, name="distance", value=runif(ecount(g2)))
plot(g2, layout=layout.fruchterman.reingold)
# place the distances into distance bins
D2 <- DistGraph(g2, dist.method="diffusion", edge.attr="distance")
BinGraph(D2, nsteps=100)

Compactness Measure the strength of association using compactness scores

Description

The compactness score of set of hits on a network is the mean distance between each pair of hits.
By comparing the observed compactness score to the scores of permuted hit sets, it is possible to
compute the significance of the strength of association between the phenotype and the network.
This method is not as effective as the Knet function and is included only for comparison.

Usage

Compactness(g, nperm=100, dist.method=c("shortest.paths", "diffusion", "mfpt"),
vertex.attr="pheno", edge.attr="distance", correct.factor=1, D=NULL,
verbose=TRUE)



4 Compactness

Arguments

g igraph object, the network to work on.
nperm Integer value, the number of permutations to be completed.
dist.method String, the method used to compute the distance between each pair of hits on the

network.
vertex.attr Character vector, the name of the vertex attributes under which the hits to be

tested are stored. The vector can contain one or more vertex attributes.
edge.attr String, the name of the edge attribute to be used as distances along the edges. If

an edge attribute with this name is not found, then each edge is assumed to have
a distance of 1. Smaller edge distances denote stronger interactions between
vertex pairs.

correct.factor Numeric value. If the network contains unconnected vertices, then the distance
between these vertices is set as the maximum distance between the connected
vertices multiplied by correct.factor.

D Symmetrical numerical matrix. A precomputed distance matrix for g output
by the DistGraph function. If NULL, then D is computed by the Compactness
function.

verbose Logical, if TRUE messages about the progress of the function are displayed.

Details

The compactness score is used by the PathExpand tool by Glaab et al. (2010). It is a measure of
the mean distance between a set of genes in a network. By comparing the compactness score of
an observed set of hits to sets of permuted hits, it is possible to produce a p-value describing the
strength of association between the gene set and the network. This is not some done within the
original paper by Glaab et al. (2010). The function is much like the Knet function, albeit not as
effective.

The compactness score C is defined as the mean shortest path distance between pairs of vertices in
a set P on network g.

C(P ) =
2
∑

i,j∈P ;i<j d
g(i, j)

|P | ∗ (|P | − 1)

The compactness score is only included within the SANTA package to allow for comparisons to be
made. Unlike the Knet function, it cannot be applied to continuous distributions of vertex weights.
It can also result in biases if there is large variability in density across the network.

The weight of a vertex should be 1 if it is a hit, 0 if it is not a hit or NA if the information is
missing. Vertices with missing weights are still included within the network but are excluded from
the permuted sets.

Value

If one vertex attribute is input, Compactness is run on the single set of vertex weights and a list con-
taining the statistics below is returned. If more than one vertex attribute is input, then Compactness
is run on each set of vertex weights and a list containing an element for each vertex attribute is
returned. Each element contains a sub-list containing the statistics below for the relevant vertex
attribute.



CreateGrid 5

score.obs Observed compactness score

score.perm Permuted compactness scores. NA if no permutations are completed.

pval p-value, computed from a z-score derived from the observed and permuted com-
pactness scores. NA if no permutations are completed.

Author(s)

Alex J. Cornish <a.cornish12@imperial.ac.uk>

References

Cornish, A.J. and Markowetz, F. (2014) SANTA: Quantifying the Functional Content of Molecular
Networks.. PLOS Computational Biology. 10:9, e1003808.

Glaab, E., Baudot A., Krasnogor N. and Valencia A. (2010). Extending pathways and processes
using molecular interaction networks to analyse cancer genome data. BMC Bioinformatics. 11(1):
597:607.

CreateGrid Generate a grid-like network

Description

Generate a network with a grid-like arrangement of edges.

Usage

CreateGrid(n=100)

Arguments

n Integer value, the number of vertices to be included.

Details

This is a simple algorithm that creates a grid-like network. Vertices are arranged in the largest
square lattice possible. Vertices not included within this square are added as an additional row.
Vertices are connected by edges to their closest neighbours.

Value

igraph object.

Author(s)

Alex J. Cornish <a.cornish12@imperial.ac.uk>



6 DistGraph

Examples

# generate and plot a grid-like network containing 100 vertices.
g <- CreateGrid(n = 100)
plot(g, layout=layout.fruchterman.reingold)

DistGraph Compute the vertex pair distance matrix for a graph

Description

Compute the distances between pairs of vertices in a graph, using a shortest path, diffusion kernel,
or mean first-passage time-based measure.

Usage

DistGraph(g, v=V(g), edge.attr=NULL, dist.method=c("shortest.paths", "diffusion", "mfpt"),
correct.inf=TRUE, correct.factor=1, verbose=TRUE)

Arguments

g igraph object, the graph on which to work.

v igraph object or numeric vector, the vertices from which each distance is cal-
culated.

edge.attr String, the name of the edge attribute to be used as distances along the edges. If
NULL, then each edge is assumed to have a distance of 1. Smaller edge distances
denote stronger interactions between vertex pairs.

dist.method String, the method used to compute the distance between each vertex pair.

correct.inf Logical, if TRUE then infinite vertex pair distances are replaced with distances
equal to the maximum distance measured across the network, multiplied by
correct.factor.

correct.factor Numeric value, if the graph contains unconnected vertices, then the distance
between these vertices is set as the maximum distance between the connected
vertices multiplied by correct.factor.

verbose Logical, if TRUE messages about the progress of the function are displayed.

Details

This function computes a distance matrix for a graph. Different methods can be used to calculate
the distance between each pair of vertices. If a set of vertices is specified, a smaller distance matrix
containing only vertices corresponding to the vertices is returned.

Descriptions of how the shortest paths (shortest.paths), diffusion kernel-based (GraphDiffusion)
and mean first-passage time (GraphMFPT) distance measures work are given in their respective func-
tion descriptions.



GraphDiffusion 7

Value

Numeric matrix, containing the distances between vertex pairs.

Author(s)

Alex J. Cornish <a.cornish12@imperial.ac.uk>

References

Kondor, R.I. and Lafferty, J. (2002). Diffusion Kernels on Graph and Other Discrete Structures.
Proc. Intl. Conf. Machine Learning.

White, S. and Smyth, P. (2003). Algorithms for Estimating Relative Importance in Networks. Tech-
nical Report UCI-ICS 04-25.

See Also

shortest.paths, GraphDiffusion, GraphMFPT

Examples

# create a graph and compute the distance matrix using the shortest paths measure
g1 <- barabasi.game(6, directed=FALSE)
DistGraph(g1, dist.method="shortest.paths")
plot(g1, layout=layout.fruchterman.reingold)

# create a graph, assign edge distances and compute the distance matrix using the
# diffusion kernel-based measure
g2 <- erdos.renyi.game(6, p.or.m=0.5, directed=FALSE)
g2 <- set.edge.attribute(g2, name="distance", value=runif(ecount(g2)))
DistGraph(g2, dist.method="diffusion", edge.attr="distance")
plot(g2, layout=layout.fruchterman.reingold)

GraphDiffusion Compute diffusion kernel-based distance matrix

Description

Using a diffusion kernel-based algorithm, compute the distance between vertex pairs in an undi-
rected network, with or without edge weights. This algorithm provides an alternative to the shortest.paths
and mfpt measures of vertex pair distance.

Usage

GraphDiffusion(g, v=V(g), edge.attr.weight=NULL, beta=1, correct.neg=TRUE)



8 GraphDiffusion

Arguments

g igraph object, the network to work on.

v igraph object or numeric vector, the vertices from which each distance is cal-
culated.

edge.attr.weight

String, the name of the edge attribute to be used as weights along the edges.
Greater weights indicate a stronger interaction between the two genes (this is
the opposite to edge distances, where smaller distances indicate stronger inter-
actions). If NULL, then each edge is assumed to have a weight of 1.

beta Numeric value, the probability that the diffusion process will take an edge ema-
nating from a vertex.

correct.neg Logical, if TRUE then negative edge distances are set to 0.

Details

Diffusion across a network follows a process similar to a random walk. This provides a method of
measuring the distance between vertex pairs that does not simply take into account a single path
(like the shortest.paths algorithm) but instead incorporates multiple paths. This function uses
a diffusion kernel-based approach to compute distances. The algorithm implemented is detailed in
the referenced paper.

The distance from vertex A to vertex A is always 0.

Value

Numeric matrix, containing the diffusion kernel-based vertex pair distances between each vertex in
v and every vertex in g.

Author(s)

Alex J. Cornish <a.cornish12@imperial.ac.uk>

References

Kondor, R.I. and Lafferty, J. (2002). Diffusion Kernels on Graph and Other Discrete Structures.
Proc. Intl. Conf. Machine Learning.

See Also

GraphMFPT, shortest.paths

Examples

# create a network and computes the diffusion kernel-derived vertex pair distance matrix
g <- barabasi.game(6, directed=FALSE)
GraphDiffusion(g)
plot(g, layout=layout.fruchterman.reingold)



GraphMFPT 9

GraphMFPT Compute mean first-passage time-based distance matrix

Description

Using the mean first-passage time method, compute the distances between vertex pairs in an undi-
rected graph, with or without edge weights.

Usage

GraphMFPT(g, v=V(g), edge.attr.weight=NULL, average.distances=TRUE)

Arguments

g igraph object, the graph to work on.

v igraph object or numeric vector, the vertices from which each distance is cal-
culated.

edge.attr.weight

String, the name of the edge attribute to be used as weights along the edges.
Greater weights indicate a stronger interaction between the two genes (this is
the opposite to edge distances, where smaller distances indicate stronger inter-
actions). If NULL then each edge is assumed to have a weight of 1.

average.distances

Logical, if TRUE then the distance from vertex A to B and the distance from
vertex B to A are averaged to give a single distance. Otherwise, two different
distances may be returned.

Details

The mean first-passage time from vertex A to vertex B is defined as the expected number of steps
taken on a random walk emanating from vertex A until the first arrival at vertex B. This provides a
method of measuring the distance between pairs of vertices that does not simply take into account
the distance along the shortest path, but rather incorporates how well the two vertices are connected
across multiple paths.

The mean first-passage time from vertex A to vertex B is not necessarily the same as the mean
first-passage time from vertex B to vertex A. If a symmetric distance matrix is required, reciprocal
distances can be averaged to give a single value for each vertex pair.

If a vertex pair is unconnected, then the distance between the vertices is Inf.

The distance from vertex A to vertex A is always 0.

Value

Numeric matrix, containing the mean first-passage time-derived vertex pair distance between each
vertex in v and every vertex in g.



10 Knet

Author(s)

Alex J. Cornish <a.cornish12@imperial.ac.uk>

References

White, S. and Smyth, P. (2003). Algorithms for Estimating Relative Importance in Networks. Tech-
nical Report UCI-ICS 04-25.

See Also

GraphDiffusion, shortest.paths

Examples

# create a and compute the mean first-passage time-based vertex pair distance matrix
g <- erdos.renyi.game(6, p.or.m=0.5, directed=FALSE)
GraphMFPT(g)
plot(g, layout=layout.fruchterman.reingold)

Knet Measure the strength of association between a phenotype and a net-
work by computing the strength of hit clustering on the network

Description

Compute the strength of clustering of high-weight vertices (hits) on a network using a modified
version of Ripley’s K-statistic. This method can be used to measure the strength of association
between a phenotype or function and a network.

Usage

Knet(g, nperm=100, dist.method=c("shortest.paths", "diffusion", "mfpt"),
vertex.attr="pheno", edge.attr=NULL, correct.factor=1, nsteps=1000,
prob=c(0, 0.05, 0.5, 0.95, 1), B=NULL, verbose=TRUE)

Arguments

g igraph object, the network to work on.

nperm Integer value, the number of permutations to be completed.

dist.method String, the method used to calculate the distance between vertex pairs.

vertex.attr Character vector, the name of the vertex attributes under which the vertex weights
to be tested are stored. The vector can contain one or more elements.

edge.attr String, the name of the edge attribute to be used as distances along the edges. If
an edge attribute with this name is not found, then each edge is assumed to have
a distance of 1.



Knet 11

correct.factor Numeric value, if the network contains unconnected vertices, then the distance
between these vertices is set as the maximum distance between the connected
vertices multiplied by correct.factor.

nsteps Integer value, the number of bins into which vertex pairs are placed.

prob Numeric vector, the quantiles to be calculated for the Knet permutations.

B Symmetrical numeric matrix. A precomputed distance bin matrix for g output
by the BinGraph function. If NULL, then B is computed within the Knet function.

verbose Logical, if TRUE messages about the progress of the function are displayed.

Details

The SANTA method uses the ’guilt-by-association’ principle to measure the strength of association
between a network and a phenotype. It does this by measuring the strength of clustering of the phe-
notype scores across the network. The stronger the clustering, the greater the association between
the network and the phenotype.

The SANTA method applies Ripley’s K-function, a well-established approach to spatial statistics
that measures the strength of clustering of points on a plane, and extends it in a number of ways.
First, a Knet function is defined by adapting the approach for networks using vertex pair distance
measures. Second, vertex weights are incorporated into Knet and the importance of vertices made
relative to their own associated weight. Third, the mean vertex weight is subtracted from each
individual vertex weight when calculating the Knet function. This means that the Knet function
measures the degree of vertex weight clustering relative to a random distribution of vertex weights.
The Knet function is defined as

Knet[s] =
2

p2

∑
i

pi
∑
j

(pj − p̄)I(dg[i, j] <= s)

where pi is the weight of vertex i, p̄ is the mean vertex weight across all vertices, and I(dg[i, j] <=
s) is an identity function, equaling 1 if vertex i and vertex j are within distance s and 0 otherwise.

In order to derive a p-value and quantify the significance of the observed distribution of weights,
the observed Knet-curve is compared to Knet-curves obtained using the same network but randomly
permuted vertex weights. Vertices with missing weights (NA) are not included within these permuta-
tions. The area under the Knet-curve (AUK) is calculated for the observed network and each of the
permuted networks and a z-score used to produce a p-value. This p-value indicates the probability
an observed AUK at least this high is seen given the null hypothesis that the vertex weights are
randomly distributed.

Vertex weights should be greater or equal that zero or equal to NA if the weight is missing.

Value

If one vertex attribute is input, Knet is run on the single set of vertex weights and a list containing
the statistics below is returned. If more than one vertex attribute is input, then Knet is run on each
set of vertex weights and a list containing an element for each vertex attribute is returned. Each
element contains a sub-list containing the statistics below for the relevant vertex attribute.

K.obs Knet-function curve for the observed vertex weights.



12 Knet

AUK.obs Area under the Knet-function curve (AUK) for the observed vertex weights.

K.perm Knet-function curve for each permutation of vertex weights. Equals NA if no
permutations are completed.

AUK.perm Area under the Knet-function curve (AUK) for each permutation of vertex weights.
NA if no permutations are completed.

K.quan Quantiles for the permuted Knet-function curves. NA if no permutations are
completed.

pval p-value, calculated from a z-score derived from the observed and permuted
AUKs. NA if no permutations are completed.

Author(s)

Alex J. Cornish <a.cornish12@imperial.ac.uk> and Florian Markowetz

References

Cornish, A.J. and Markowetz, F. (2014) SANTA: Quantifying the Functional Content of Molecular
Networks.. PLOS Computational Biology. 10:9, e1003808.

Okabe, A. and Yamada, I. (2001). The K-function method on a network and its computational
implementation Geographical Analysis. 33(3): 271-290.

See Also

Knode

Examples

# apply Knet to a network with hit clustering
g.clustered <- barabasi.game(50, directed=FALSE)
g.clustered <- SpreadHits(g.clustered, h=10, lambda=10)
res.clustered <- Knet(g.clustered, nperm=100, vertex.attr="hits")
res.clustered$pval
plot.Knet(res.clustered)

# apply Knet to a network without hit clustering
g.unclustered <- barabasi.game(50, directed=FALSE)
g.unclustered <- SpreadHits(g.unclustered, h=10, lambda=0)
res.unclustered <- Knet(g.unclustered, nperm=100, vertex.attr="hits")
res.unclustered$pval
plot.Knet(res.unclustered)



Knode 13

Knode Rank vertices by their strength of association with high-weight vertices

Description

Rank vertices by their strength of association with high-weight vertices using a modified version of
Ripley’s K-statistic. Vertex weights can either be binary or positive and continuous.

Usage

Knode(g, dist.method=c("shortest.paths", "diffusion", "mfpt"), vertex.attr="pheno",
edge.attr=NULL, correct.factor=1, nsteps=1000, B=NULL, verbose=TRUE)

Arguments

g igraph object, the network to work on.

dist.method String, the method used to calculate the distance between each vertex pair.

vertex.attr Character vector, the name of the vertex attributes under which the vertex weights
to be tested are stored. The vector can contain one or more elements.

edge.attr String, the name of the edge attribute to be used as distances along the edges.

correct.factor Numeric value, if the network contains unconnected vertices, then the distance
between these vertices is set as the maximum distance between the connected
vertices multiplied by correct.factor.

nsteps Integer value, the number of bins into which vertex pairs are placed.

B Symmetric numerical matrix. A precomputed distance bin matrix for g output by
the BinGraph function. If NULL, then B is computed within the Knode function.

verbose Logical, if TRUE messages about the progress of the function are displayed.

Details

Using the inner sum of the Knet equation, it becomes possible to prioritise vertices by how well
they are connected, or associated, with high-weight vertices. The inner sum of the Knet equation is

Knode
i [s] =

2

p

∑
j

(pj − p̄)I(dg(i, j) <= s)

where pj is the weight of vertex j, p̄ is the mean vertex weight across all vertices, and I(dg[i, j] <=
s) is an identity function, equaling 1 if vertex i and vertex j are within distance s and 0 otherwise.

If the name of each vertex is stored within a vertex attribute called name, then the returned scores
are labelled with these names.

Vertex weights should be greater than or equal to 0, or equal to NA if the weight is missing. The
Knode statistic is still computed for vertices with missing weights.

If an edge attribute with this name is not found, then each edge is assumed to have a distance of 1.
Smaller edge distances denote stronger interactions between vertex pairs



14 plot.Knet

Value

A sorted named numerical vector of Knode AUKs for each vertex.

If one vertex attribute is input, then the Knode AUKs are calculated and a single numerical vector is
returned. If more than one vertex attribute is input, then a list of vectors, one for each set of vertex
weights, is returned.

Author(s)

Alex J. Cornish <a.cornish12@imperial.ac.uk> and Florian Markowetz

References

Cornish, A.J. and Markowetz, F. (2014) SANTA: Quantifying the Functional Content of Molecular
Networks.. PLOS Computational Biology. 10:9, e1003808.

See Also

Knet

Examples

# create a network with a single cluster of high-weight vertices
# rank all vertices by their strength of association with the high-weight vertices
g1 <- erdos.renyi.game(15, p.or.m=0.3, directed=FALSE)
g1 <- SpreadHits(g1, h=3, lambda=10)
Knode(g1, vertex.attr="hits")
plot(g1)

plot.Knet Plot the results of the Knet function

Description

Plot the observed Knet curve against the quantiles of the permuted Knet curves and the observed
AUK against the permuted AUKs.

Usage

## S3 method for class 'Knet'
plot(x, sequential=FALSE, ...)

Arguments

x Results from the Knet function.

sequential Logical, if TRUE then the plots are sequential. Otherwise, the two plots are
plotted alongside each other.

... Additional arguments to be passed to plot.



plot.Knet 15

Details

If the high-weight vertices are clustered, then the observed Knet curve and AUK will be high relative
to the permuted Knet curves and AUKs. The greater the strength of clustering, the greater the
difference between the observed and permuted statistics. If the strength of clustering is low, then
the observed and permuted curves and AUKs will likely overlap.

The first plot displays the the observed curve in red and the quantiles of the permuted curves in
yellow. The quantile boundaries are displayed as grey lines. These boundaries are specified in the
Knet function. The second plot displays the observed AUK as a red line and the distribution of
permuted AUKs in grey.

Value

Plots described in details section.

Author(s)

Alex J. Cornish <a.cornish12@imperial.ac.uk> and Florian Markowetz

References

Cornish, A.J. and Markowetz, F. (2014) SANTA: Quantifying the Functional Content of Molecular
Networks.. PLOS Computational Biology. 10:9, e1003808.

See Also

Knet

Examples

# plot results with hit clustering
g.clustered <- barabasi.game(100, directed=FALSE)
g.clustered <- SpreadHits(g.clustered, h=10, lambda=10)
res.clustered <- Knet(g.clustered, nperm=10, vertex.attr="hits")
res.clustered$pval
plot.Knet(res.clustered)

# plot results without hit clustering
g.unclustered <- barabasi.game(100, directed=FALSE)
g.unclustered <- SpreadHits(g.unclustered, h=10, lambda=0)
res.unclustered <- Knet(g.unclustered, nperm=10, vertex.attr="hits")
res.unclustered$pval
plot.Knet(res.unclustered)



16 SANTA.data

SANTA.data Pre-processed dataset for the SANTA vignette

Description

Pre-processed network and expression data for use in the accompanying vignette.

Details

edgelist.humannet Data frame of functional interactions from the HumanNet network with edge
distances derived from the accompanying log-likelihood scores.

edgelist.intact Data frame of H. sapiens physical interactions from the IntAct database down-
loaded on 2013-05-02.

g.bandyopadhyay.treated S. cerevisiae interaction network created from the MMS-treated GI data
from the study by Bandyopadhyay et al. Interactions represent correlation in GI profile. Net-
work is an igraph object.

g.bandyopadhyay.untreated S. cerevisiae interaction network created from the untreated GI data
from the study by Bandyopadhyay et al. Interactions represent correlation in GI profile. Net-
work is an igraph object.

g.costanzo.cor S. cerevisiae interaction network created from the GI data from the study by Costanzo
et al. Interactions represent correlation in GI profile. Network is an igraph object.

g.costanzo.raw S. cerevisiae interaction network created from the GI data from the study by Costanzo
et al. Interactions represent raw GIs. Network is an igraph object.

g.srivas.high S. cerevisiae interaction network created from the high UV-dosage GI data from the
study by Srivas et al. Interactions represent raw GIs. Network is an igraph object.

g.srivas.untreated S. cerevisiae interaction network created from the untreated GI data from the
study by Srivas et al. Interactions represent raw GIs. Network is an igraph object.

go.entrez Genes associated with the GO term GO:0042981 (regulation of apoptotic process).

rnai.cheung Matrix of gene-wise essentiality p-values for 6 cancer cell lines. Rows represent genes
and columns represent cancers. This data was created from the RNAi screens conducted by
Cheung et al. The weight of evidence approach was used to compute essentiality scores for
each shRNA and GENE-E was used to collapse the shRNA scores into gene-wise scores.

References

Lee, I., Blom, U.M., Wang, P.I. et al. (2011). Prioritizing candidate disease genes by network-based
boosting of genome-wide association data. Genome Research. 21, 1109-21.

Orchard, S., Ammari, M., Aranda, B. et al. (2014). The MIntAct project - IntAct as a common
curation platform for 11 molecular interaction databases. Nucleic Acids Research. 42:1, D358-63.

Costanzo, M., Baryshnikova., A., Bellay, J. et al. (2010). The Genetic Landscape of a Cell. Science.
327:5964, 425-31.

Bandyopadhyay, S., Mehta, M., Kuo, D. et al. (2010) Rewiring of Genetic Networks in Response to
DNA Damage. Science. 330, 1385-90.



SpreadHits 17

Srivas, R., Costelloe, T., Carvunis, A. et al. (2013) A UV-induced genetic network links the RSC
complex to nucleotide excision repair and shows dose-dependant rewiring. Cell Reports. 5:6, 1714-
24.

Ashburner, M., Ball, C.A., Blake, J.A. et al. (2000) Gene Ontology: tool for the unification of
biology. Nature Genetics. 25, 25-9.

Cheung, H.W, Cowley, G.S., Weir, B.A. et al. (2011) Systematic investigation of genetic vulner-
abilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. PNAS.
108:30, 12372-7.

Examples

data(g.bandyopadhyay.treated)

SpreadHits Spread hits across a network in clusters

Description

Spread hits across a network in one or more clusters using an exponential probability distribution
related to the distance of each vertex from a seed vertex.

Usage

SpreadHits(g, h, clusters=1, distance.cutoff=3, lambda=1,
dist.method=c("shortest.paths", "diffusion", "mfpt"),
edge.attr=NULL, hit.color="red", D=NULL, attempts=1000, verbose=TRUE)

Arguments

g igraph object, the network to work on.

h Integer value, the number of hits in each cluster.

clusters Integer value, the number of clusters to add the network.
distance.cutoff

Integer value, the minimum distance between the seed vertex of each cluster.

lambda Numeric value, the strength of hit clustering. If lambda == 0, then the hits are
randomly distributed. If lambda > 0, then the hits are clustered. The greater the
value of lambda, the greater the strength of the hit clustering.

dist.method String, the method used to compute the distance between each vertex and the
seed vertex.

edge.attr String, the name of the edge attribute to be used as distances along the edges. If
NULL, then each edge is assumed to have a distance of 1. Smaller edge distances
denote stronger interactions between vertex pairs.

hit.color String, the colour of the hits if the network is plotted.

D Pre-computed numeric distance matrix. If NULL, then D is computed within the
function.



18 SpreadHits

attempts Integer value, the number of attempts made at each stage of the placement algo-
rithm before the function terminates.

verbose Logical, if TRUE messages about the progress of the function are displayed.

Details

SpreadHits can be used to add hits to a network without hits, or replace hits on a network with
hits. The probability of a vertex being labelled as a hit depends on its distance from a randomly
chosen starting vertex. The value of lambda denotes the shape of the probability distribution used
to spread the hits. The greater the value of lambda, the greater the strength of hit clustering. The
probability of vertex i being a hit is proportional to

P [i] ∼ lambda−d[start,i]

where d[start, i] is the distance between the start vertex and vertex i.

Hits can be added in one or more clusters. If multiple clusters are being added, then the function first
identifies an equal number of seed vertices at least distance.cutoff distance apart in the network.
If the function cannot identify vertices that satisfy this condition within the specified number of
attempts, then it returns NULL. If the function is able to find suitable seed vertices, then it proceeds
to label vertices positioned around each seed vertex as hits, using a probability function shaped by
lambda.

Whether a vertex is a hit or a miss is given in the vertex attribute hits. If the vertex is a hit, then it
has the score 1. If it is a miss, then it has the score 0. A color can also be chosen to highlight the
hits when the network is plotted. Misses are automatically coloured grey.

Value

A modified version of the input igraph object. Whether a vertex is a hit or miss is given under the
vertex attribute hits.

Author(s)

Alex J. Cornish <a.cornish12@imperial.ac.uk>

Examples

# create a network and add 1 cluster of 3 hits
g1 <- erdos.renyi.game(30, p.or.m=0.1, directed=FALSE)
g1 <- SpreadHits(g1, h=3, clusters=1, lambda=10)
plot(g1, layout=layout.fruchterman.reingold)

# create a network and add 2 clusters of 3 hits
g2 <- erdos.renyi.game(30, p.or.m=0.1, directed=FALSE)
g2 <- SpreadHits(g2, h=3, clusters=3, distance.cutoff=2, lambda=0)
plot(g2, layout=layout.fruchterman.reingold)



Index

BinGraph, 2

Compactness, 3
CreateGrid, 5

DistGraph, 3, 6

edgelist.humannet (SANTA.data), 16
edgelist.intact (SANTA.data), 16

g.bandyopadhyay.treated (SANTA.data), 16
g.bandyopadhyay.untreated (SANTA.data),

16
g.costanzo.cor (SANTA.data), 16
g.costanzo.raw (SANTA.data), 16
g.srivas.high (SANTA.data), 16
g.srivas.untreated (SANTA.data), 16
go.entrez (SANTA.data), 16
GraphDiffusion, 7, 7, 10
GraphMFPT, 7, 8, 9

Knet, 10, 14, 15
Knode, 12, 13

plot.Knet, 14

rnai.cheung (SANTA.data), 16

SANTA.data, 16
shortest.paths, 7, 8, 10
SpreadHits, 17

19


	BinGraph
	Compactness
	CreateGrid
	DistGraph
	GraphDiffusion
	GraphMFPT
	Knet
	Knode
	plot.Knet
	SANTA.data
	SpreadHits
	Index

