
Package ‘NetPathMiner’
October 11, 2022

Version 1.32.0

Date 2014 onwards

Title NetPathMiner for Biological Network Construction, Path Mining
and Visualization

Author Ahmed Mohamed <mohamed@kuicr.kyoto-u.ac.jp>, Tim Hancock

<timothy.hancock@kuicr.kyoto-u.ac.jp>, Ichigaku Takigawa

<takigawa@kuicr.kyoto-u.ac.jp>, Nicolas Wicker

<nicolas.wicker@unistra.fr>

Maintainer Ahmed Mohamed <mohamed@kuicr.kyoto-u.ac.jp>

Description NetPathMiner is a general framework for network path
mining using genome-scale networks. It constructs networks from
KGML, SBML and BioPAX files, providing three network
representations, metabolic, reaction and gene representations.
NetPathMiner finds active paths and applies machine learning
methods to summarize found paths for easy interpretation. It
also provides static and interactive visualizations of networks
and paths to aid manual investigation.

Depends R (>= 3.0.2), igraph (>= 1.0)

Suggests rBiopaxParser (>= 2.1), RCurl, graph, knitr, rmarkdown,
BiocStyle

VignetteBuilder knitr

License GPL (>= 2)

URL https://github.com/ahmohamed/NetPathMiner

NeedsCompilation yes

SystemRequirements libxml2, libSBML (>= 5.5)

Biarch TRUE

biocViews GraphAndNetwork, Pathways, Network, Clustering,
Classification

RoxygenNote 6.1.1

Encoding UTF-8

1

https://github.com/ahmohamed/NetPathMiner

2 R topics documented:

git_url https://git.bioconductor.org/packages/NetPathMiner

git_branch RELEASE_3_15

git_last_commit 42c5764

git_last_commit_date 2022-04-26

Date/Publication 2022-10-11

R topics documented:
NetPathMiner-package . 3
assignEdgeWeights . 3
biopax2igraph . 5
colorVertexByAttr . 6
expandComplexes . 7
extractPathNetwork . 9
ex_biopax . 10
ex_kgml_sig . 10
ex_microarray . 10
ex_sbml . 11
getAttrStatus . 11
getGeneSetNetworks . 12
getGeneSets . 14
getPathsAsEIDs . 15
KGML2igraph . 16
layoutVertexByAttr . 17
makeMetaboliteNetwork . 18
makeReactionNetwork . 19
NPMdefaults . 20
pathClassifier . 21
pathCluster . 23
pathRanker . 24
pathsToBinary . 26
plotAllNetworks . 28
plotClassifierROC . 29
plotClusterMatrix . 30
plotCytoscapeGML . 31
plotNetwork . 33
plotPathClassifier . 34
plotPathCluster . 36
plotPaths . 37
predictPathClassifier . 38
predictPathCluster . 40
registerMemoryErr . 41
reindexNetwork . 41
rmSmallCompounds . 43
samplePaths . 44
SBML2igraph . 45

NetPathMiner-package 3

simplifyReactionNetwork . 47
stdAttrNames . 48
toGraphNEL . 49
vertexDeleteReconnect . 50

Index 51

NetPathMiner-package General framework for network extraction, path mining.

Description

NetPathMiner implements a flexible module-based process flow for network path mining and vi-
sualization, which can be fully inte-grated with user-customized functions. NetPathMiner supports
construction of various types of genome scale networks from KGML, SBML and BioPAX formats,
enabling its utility to most common pathway databases. NetPathMiner also provides different visu-
alization techniques to facilitate the analysis of even thousands of output paths.

Author(s)

Ahmed Mohamed <mohamed@kuicr.kyoto-u.ac.jp>

assignEdgeWeights Assigning weights to network edges

Description

This function computes edge weights based on a gene expression profile.

Usage

assignEdgeWeights(microarray, graph, use.attr, y, weight.method = "cor",
complex.method = "max", missing.method = "median",
same.gene.penalty = "median", bootstrap = 100, verbose = TRUE)

Arguments

microarray Microarray should be a Dataframe or a matrix, with genes as rownames, and
samples as columns.

graph An annotated igraph object.

use.attr An attribute name to map microarray rows (genes) to graph vertices. The at-
tribute must be annotated in graph, and the values correspond to rownames of
microarray. You can check the coverage and if there are complex vertices using
getAttrStatus. You can eliminate complexes using expandComplexes.

y Sample labels, given as a factor or a character vector. This must be the same
size as the columns of microarray

4 assignEdgeWeights

weight.method A function, or a string indicating the name of the function to be used to compute
the edge weights. The function is provided with 2 numerical verctors (2 rows
from microarray), and it should return a single numerical value (or NA). The
default computes Pearson’s correlation.

complex.method A function, or a string indicating the name of the function to be used in weight-
ing edges connecting complexes. If a vertex has >1 attribute value, all possible
pairwise weights are first computed, and given to complex.method. The default
function is max.

missing.method A function, or a string indicating the name of the function to be used in weight-
ing edges when one of the vertices lack expression data. The function is passed
all edge weights on the graph. Default is median.

same.gene.penalty

A numerical value to be assigned when 2 adjacent vertices have the same at-
tribute value, since correlation and similarity measure will give perfect scores.
Alternatively, same.gene.penalty can be a function, computing the penalty
from all edge weights on the graph (excluding same-gene and missing values).
The default is to take the median

bootstrap An integer n, where the weight.method is perfomed on n permutations of the
gene profiles, and taking the median value. Set it to NA to disable bootstrapping.

verbose Print the progress of the function.

Value

The input graph with edge.weight as an edge attribute. The attribute can be a list of weights if y
labels were provided.

Author(s)

Ahmed Mohamed

Examples

Convert a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

Assign edge weights based on Affymetrix attributes and microarray dataset.
Calculate Pearson's correlation.
data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot",
y=factor(colnames(ex_microarray)), bootstrap = FALSE)

Using Spearman correlation, assigning missing edges to -1
Not run:

assignEdgeWeights(microarray, graph, use.attr="miriam.affy.probeset",
y=factor(colnames(microarray)),
weight.method = function(x1,x2) cor(x1,x2, method="spearman"),
missing.method = -1)

biopax2igraph 5

End(Not run)

biopax2igraph Processes BioPAX objects into igraph objects

Description

This function takes BioPAX objects (level 2 or 3) as input, and returns either a metabolic or a
signaling network as output.

Usage

biopax2igraph(biopax, parse.as = c("metabolic", "signaling"),
expand.complexes = FALSE, inc.sm.molecules = FALSE, verbose = TRUE)

Arguments

biopax BioPAX object generated by readBiopax.

parse.as Whether to process file into a metabolic or a signaling network.
expand.complexes

Split protein complexes into individual gene nodes. Ignored if parse.as="metabolic".
inc.sm.molecules

Include small molecules that are participating in signaling events. Ignored if
parse.as="metabolic".

verbose Whether to display the progress of the function.

Details

This function requires rBiopaxParser installed.

Users can specify whether files are processes as metabolic or signaling networks.

Metabolic networks are given as bipartite graphs, where metabolites and reactions represent vertex
types. Reactions are constructed from Conversion classes, connecting them to their corresponding
Lefts and Rights. Each reaction vertex has genes attribute, listing all Catalysis relationships of
this reaction. As a general rule, reactions inherit all annotation attributes of its catalyzig genes.

Signaling network have genes as vertices and edges represent interactions, such as activiation /
inhibition. Genes participating in successive reactions are also connected. Signaling interactions
are constructed from Control classes, where edges are drawn from controller to controlled.

All annotation attributes are exracted from XRefs associated with the vertices, and are stored ac-
cording to MIRIAM guidelines (miraim.db, where db is the database name).

Value

An igraph object, representing a metbolic or a signaling network.

6 colorVertexByAttr

Author(s)

Ahmed Mohamed

See Also

Other Database extraction methods: KGML2igraph, SBML2igraph

Examples

if(requireNamespace("rBiopaxParser")){
data(ex_biopax)
Process biopax as a metabolic network
g <- biopax2igraph(ex_biopax)
plotNetwork(g)

Process SBML file as a signaling network
g <- biopax2igraph(ex_biopax, parse.as="signaling", expand.complexes=TRUE)

}

colorVertexByAttr Computes colors for vertices according to their attributes.

Description

This function returns a list of colors for vertices, assigned similar colors if they share a common
attribute (ex: in the same pathway, etc).

Usage

colorVertexByAttr(graph, attr.name, col.palette = palette())

Arguments

graph An annotated igraph object.

attr.name The attribute name (ex: "pathway") by which vertices will be colored. Complex
attributes, where a vertex belongs to more than one group, are supported.

col.palette A color palette, or a palette generating function (ex:

col.palette=rainbow

).

Value

A list of colors (in HEX format) for vertices.

Author(s)

Ahmed Mohamed

expandComplexes 7

See Also

Other Plotting methods: layoutVertexByAttr, plotAllNetworks, plotClassifierROC, plotClusterMatrix,
plotCytoscapeGML, plotNetwork, plotPathClassifier, plotPaths

Examples

data("ex_kgml_sig")
v.colors <- colorVertexByAttr(ex_kgml_sig, "pathway")
plotNetwork(ex_kgml_sig, vertex.color=v.colors)

expandComplexes Expand reactions / complexes into their gene constituents.

Description

These are general functions to expand vertices by their attributes, i.e. create a separate vertex for
each attribute value.

Usage

expandComplexes(graph, v.attr, keep.parent.attr = "^pathway",
expansion.method = c("normal", "duplicate"),
missing.method = c("keep", "remove", "reconnect"))

makeGeneNetwork(graph, v.attr = "genes", keep.parent.attr = "^pathway",
expansion.method = "duplicate", missing.method = "remove")

Arguments

graph An annotated igraph object.

v.attr Name of the attribute which vertices are expanded to.
keep.parent.attr

A (List of) regex experssions representing attributes to be inherited by daughter
vertices. If "all" is passed, all parent attributes are inherited.

expansion.method

If "duplicate", attribute values sharing more than one parent vertex are dupli-
cated for each vertex they participate in. For exmaple, if one gene G1 catalyzes
reactions R1, R2; then G1##R1, and G1##R2 vertices are created. If "normal"
only one vertex (G1) is created, and inherit all R1 and R2 connections and at-
tributes.

missing.method How to deal with vertices with no attribute values. "keep" retains the parent
node, "remove" simply deletes the vertex, and "reconnect" removes the vertex
and connect its neighbours to each other (to prevent graph cuts).

8 expandComplexes

Details

These functions can be very useful when merging networks constructed from different databases.
For example, to match a network created from Reactome to a KEGG network, you can expand
metabolite vertices by "miriam.kegg.compound" attribute.

Value

A new graph with vertices expanded.

makeGeneNetwork returns a graph, where nodes are genes, and edges represent participation in
succesive reactions.

Author(s)

Ahmed Mohamed

See Also

Other Network processing methods: makeMetaboliteNetwork, makeReactionNetwork, reindexNetwork,
rmSmallCompounds, simplifyReactionNetwork, vertexDeleteReconnect

Examples

Make a gene network from a reaction network.
data(ex_sbml) # A bipartite metbaolic network.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
ggraph <- makeGeneNetwork(rgraph)

Expand vertices into their contituent genes.
data(ex_kgml_sig) # Ras and chemokine signaling pathways in human

ggraph <- expandComplexes(ex_kgml_sig, v.attr = "miriam.ncbigene",
keep.parent.attr= c("^pathway", "^compartment"))

Create a separate vertex for each compartment. This is useful in duplicating
metabolite vertices in a network.
Not run:
graph <- expandComplexes(graph, v.attr = "compartment",

keep.parent.attr = "all",
expansion.method = "duplicate",
missing.method = "keep")

End(Not run)

extractPathNetwork 9

extractPathNetwork Creates a subnetwork from a ranked path list

Description

Creates a subnetwork from a ranked path list generated by pathRanker.

Usage

extractPathNetwork(paths, graph)

Arguments

paths The paths extracted by pathRanker.

graph A annotated igraph object.

Value

A subnetwork from all paths provided. If paths are computed for several labels (sample categories),
a subnetwork is returned for each label.

Author(s)

Ahmed Mohamed

See Also

Other Path ranking methods: getPathsAsEIDs, pathRanker, samplePaths

Examples

Prepare a weighted reaction network.
Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

Assign edge weights based on Affymetrix attributes and microarray dataset.
Calculate Pearson's correlation.

data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot",
y=factor(colnames(ex_microarray)), bootstrap = FALSE)

Get ranked paths using probabilistic shortest paths.
ranked.p <- pathRanker(rgraph, method="prob.shortest.path",

K=20, minPathSize=6)

Get the subnetwork of paths in reaction graph.
reaction.sub <- getPathsAsEIDs(ranked.p, rgraph)

10 ex_microarray

Get the subnetwork of paths in the original metabolic graph.
metabolic.sub <- getPathsAsEIDs(ranked.p, ex_sbml)

ex_biopax Biopax example data

Description

A dataset containing Porphyrin metabolism pathway in Biopax Level 3 and parsed with readBiopax.

Examples

data(ex_biopax)
ex_biopax

ex_kgml_sig Singaling network from KGML example

Description

An example igraph object representing Ras and chemokine signaling pathways in human extracted
from KGML files.

Examples

data(ex_kgml_sig)
plotNetwork(ex_kgml_sig, vertex.color="pathway")

ex_microarray An microarray data example.

Description

An microarray data example. This is part of the ALL dataset, for demonstration purposes.

Examples

data(ex_microarray)

ex_sbml 11

ex_sbml Metabolic network from SBML example

Description

An example igraph object representing bipartite metabolic network of Carbohydrate metabolism
extracted from SBML file from Reactome database.

Examples

data(ex_sbml)
plotNetwork(ex_sbml, vertex.color="compartment.name")

getAttrStatus Get / Set vertex attribute names and coverage

Description

These functions report the annotation status of the vertices of a given network, modify or remove
certain annotations.

Usage

getAttrStatus(graph, pattern = "^miriam.")

getAttrNames(graph, pattern = "")

getAttribute(graph, attr.name)

setAttribute(graph, attr.name, attr.value)

rmAttribute(graph, attr.name)

Arguments

graph An annotated igraph object.

pattern A regex experssion representing attribute name pattern.

attr.name The attribute name

attr.value A list of attribute values. This must be the same size as the number of vertices.

Details

NetPathMiner stores all its vertex annotation attributes in a list, and stores them collectively as a
single attr. This is not to interfer with graph_attr_names from igraph package. All functions
here target NetPathMiner annotations only.

12 getGeneSetNetworks

Value

For getAttrStatus, a dataframe summarizing the number of vertices with no (missing), one
(single) or more than one (complex) attribute value. The coverage

For getAttrNames, a character vector of attribute names matching the pattern.

For getAttribute, a list of vertex annotation values for the query attribute.

For setAttribute, a graph with the new attribute set.

For rmAttrNames, a new igraph object with the attibute removed.

Author(s)

Ahmed Mohamed

See Also

Other Attribute handling methods: stdAttrNames

Examples

data(ex_kgml_sig) # Ras and chemokine signaling pathways in human

Get status of attribute "pathway" only
getAttrStatus(ex_kgml_sig, "^pathway$")

Get status of all attributes starting with "pathway" and "miriam" keywords
getAttrStatus(ex_kgml_sig, "(^miriam)|(^pathway)")

Get all attribute names containing "miriam"
getAttrNames(ex_kgml_sig, "miriam")
Get all attribute names containing "miriam"
getAttribute(ex_kgml_sig, "miriam.ncbigene")

Remove an attribute from graph
graph <- rmAttribute(ex_kgml_sig, "miriam.ncbigene")

getGeneSetNetworks Generate geneset networks from an annotated network.

Description

This function generates geneset networks based on a given netowrk, by grouping vertices sharing
common attributes (in the same pathway or compartment).

Usage

getGeneSetNetworks(graph, use.attr = "pathway", format = c("list",
"pathway-class"))

getGeneSetNetworks 13

Arguments

graph An annotated igraph object..

use.attr The attribute by which vertices are grouped (tepically pathway, or GO)

format The output format. If "list" is specified, a list of subgraphs are returned (de-
fault). If "pathway-class" is specified, a list of pathway-class objects are re-
turned. Pathway-class is used by graphite package to run several methods of
topology-based enrichment analyses.

Value

A list of geneset networks as igraph or Pathway-class objects.

Author(s)

Ahmed Mohamed

See Also

getGeneSets

Examples

data(ex_kgml_sig) # Ras and chemokine signaling pathways in human
genesetnets <- getGeneSetNetworks(ex_kgml_sig, use.attr="pathway")

Integration with graphite package
Not run:
if(requireNamespace("graphite") & requireNamespace("clipper") & requireNamespace("ALL")){
genesetnets <- getGeneSetNetworks(ex_kgml_sig,
use.attr="pathway", format="pathway-class")
path <- convertIdentifiers(genesetnets$`Chemokine signaling pathway`,
"entrez")
genes <- nodes(path)
data(ALL)
all <- as.matrix(exprs(ALL[1:length(genes),1:20]))
classes <- c(rep(1,10), rep(2,10))
rownames(all) <- genes

runClipper(path, all, classes, "mean", pathThr=0.1)
}

End(Not run)

14 getGeneSets

getGeneSets Generate genesets from an annotated network.

Description

This function generates genesets based on a given netowrk, by grouping vertices sharing common
attributes (in the same pathway or compartment). Genes associated with each vertex can be specified
through gene.attr argument.

Usage

getGeneSets(graph, use.attr = "pathway", gene.attr = "genes", gmt.file)

Arguments

graph An annotated igraph object..

use.attr The attribute by which vertices are grouped (tepically pathway, or GO)

gene.attr The attribute listing genes annotated with each vertex (ex: miriam.ncbigene,
miriam.uniprot, ...)

gmt.file Optinal. If provided, Results are exported to a GMT file. GMT files are readily
used by most gene set analysis packages.

Value

A list of genesets or written to gmt file if provided.

Author(s)

Ahmed Mohamed

See Also

getGeneSetNetworks

Examples

data(ex_kgml_sig) # Ras and chemokine signaling pathways in human
genesets <- getGeneSets(ex_kgml_sig, use.attr="pathway", gene.attr="miriam.ncbigene")

Write the genesets in a GMT file, and read it using GSEABase package.
getGeneSets(ex_kgml_sig, use.attr="pathway", gene.attr="miriam.ncbigene", gmt.file="kgml.gmt")
Not run:

if(requireNamespace("GSEABase"))
toGmt("kgml.gmt")

End(Not run)

getPathsAsEIDs 15

Create genesets using compartment information
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
genesets <- getGeneSets(ex_sbml, use.attr="compartment.name", gene.attr="miriam.uniprot")

getPathsAsEIDs Convert a ranked path list to edge ids of a graph

Description

Convert a ranked path list to Edge ids of a graph, where paths can come from a different represen-
tation (for example matching path from a reaction network to edges on a metabolic network).

Usage

getPathsAsEIDs(paths, graph)

Arguments

paths The paths extracted by pathRanker.

graph A annotated igraph object.

Value

A list of edge ids on the provided graph.

Author(s)

Ahmed Mohamed

See Also

Other Path ranking methods: extractPathNetwork, pathRanker, samplePaths

Examples

Prepare a weighted reaction network.
Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

Assign edge weights based on Affymetrix attributes and microarray dataset.
Calculate Pearson's correlation.

data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot",
y=factor(colnames(ex_microarray)), bootstrap = FALSE)

Get ranked paths using probabilistic shortest paths.

16 KGML2igraph

ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
K=20, minPathSize=6)

Get the edge ids along paths in the reaction graph.
path.eids <- getPathsAsEIDs(ranked.p, rgraph)

Get the edge ids along paths in the original metabolic graph.
path.eids <- getPathsAsEIDs(ranked.p, ex_sbml)

KGML2igraph Processes KGML files into igraph objects

Description

This function takes KGML files as input, and returns either a metabolic or a signaling network as
output.

Usage

KGML2igraph(filename, parse.as = c("metabolic", "signaling"),
expand.complexes = FALSE, verbose = TRUE)

Arguments

filename A character vector containing the KGML files to be processed. If a directory
path is provided, all *.xml files in it and its subdirectories are included.

parse.as Whether to process file into a metabolic or a signaling network.
expand.complexes

Split protein complexes into individual gene nodes. This argument is ignored if
parse.as="metabolic"

verbose Whether to display the progress of the function.

Details

Users can specify whether files are processes as metabolic or signaling networks.

Metabolic networks are given as bipartite graphs, where metabolites and reactions represent ver-
tex types. This is constructed from <reaction> xml node in KGML file, connecting them to their
corresponding substrates and products. Each reaction vertex has genes attribute, listing all genes
associated with the reaction. As a general rule, reactions inherit all annotation attributes of its
catalyzig genes.

Signaling network have genes as vertices and edges represent interactions, such as activiation /
inhibition. Genes participating in successive reactions are also connected. Signaling parsing method
processes <ECrel>, <PPrel> and <PCrel> interactions from KGML files.

To generate a genome scale network, simply provide a list of files to be parsed, or put all file in a
directory, as pass the directory path as filename

layoutVertexByAttr 17

Value

An igraph object, representing a metbolic or a signaling network.

Author(s)

Ahmed Mohamed

See Also

Other Database extraction methods: SBML2igraph, biopax2igraph

Examples

if(is.loaded("readkgmlfile")){ # This is false if libxml2 wasn't available at installation.
filename <- system.file("extdata", "hsa00860.xml", package="NetPathMiner")

Process KGML file as a metabolic network
g <- KGML2igraph(filename)
plotNetwork(g)

Process KGML file as a signaling network
g <- KGML2igraph(filename, parse.as="signaling", expand.complexes=TRUE)
plotNetwork(g)

}

layoutVertexByAttr A graph layout function, which groups vertices by attribute.

Description

This function generates a layout for igraph objects, keeping vertices with the same attribute (ex: in
the same pathway, etc) close to each other.

Usage

layoutVertexByAttr(graph, attr.name, cluster.strength = 1,
layout = layout.auto)

Arguments

graph An annotated igraph object.

attr.name The attribute name by which vertices are laid out.
cluster.strength

A number indicating tie strengths between vertices with the same attribute. The
larger it is, the closer the vertices will be.

layout A layout function, ideally a force-directed layout fuction, such as layout_with_fr
and layout_with_kk.

18 makeMetaboliteNetwork

Value

A two-column matrix indicating the x and y postions of vertices.

Author(s)

Ahmed Mohamed

See Also

Other Plotting methods: colorVertexByAttr, plotAllNetworks, plotClassifierROC, plotClusterMatrix,
plotCytoscapeGML, plotNetwork, plotPathClassifier, plotPaths

Examples

data("ex_kgml_sig")
v.layout <- layoutVertexByAttr(ex_kgml_sig, "pathway")
plotNetwork(ex_kgml_sig, vertex.color="pathway", layout=v.layout)

v.layout <- layoutVertexByAttr(ex_kgml_sig, "pathway", cluster.strength=5)
plotNetwork(ex_kgml_sig, vertex.color="pathway", layout=v.layout)

makeMetaboliteNetwork Convert metabolic network to metabolite network.

Description

This function removes reaction nodes keeping them as edge attributes. The resulting network con-
tains metabolite nodes only, where edges indicate that reaction conversions.

Usage

makeMetaboliteNetwork(graph)

Arguments

graph A metabolic network.

Value

A reaction network.

Author(s)

Ahmed Mohamed

makeReactionNetwork 19

See Also

Other Network processing methods: expandComplexes, makeReactionNetwork, reindexNetwork,
rmSmallCompounds, simplifyReactionNetwork, vertexDeleteReconnect

Examples

Conver a metabolic network to a metbolite network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
mgraph <- makeMetaboliteNetwork(ex_sbml)

makeReactionNetwork Convert metabolic network to reaction network.

Description

This function removes metabolite nodes keeping them as edge attributes. The resulting network
contains reaction nodes only, where edges indicate that a metabolite produced by one reaction is
consumed by the other.

Usage

makeReactionNetwork(graph, simplify = FALSE)

Arguments

graph A metabolic network.
simplify An option to remove translocation and spontaneous reactions that require no cat-

alyzing genes. Translocation reactions are detected from reaction name (SBML,
BioPAX), or by having identical substrates and products.

Value

A reaction network.

Author(s)

Ahmed Mohamed

See Also

Other Network processing methods: expandComplexes, makeMetaboliteNetwork, reindexNetwork,
rmSmallCompounds, simplifyReactionNetwork, vertexDeleteReconnect

Examples

Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

20 NPMdefaults

NPMdefaults Default values for NetPathMiner

Description

This function gets a NetPathMiner default value for a variable.

Usage

NPMdefaults(value)

Arguments

value a character string indicating the variable name.

Details

NetPathMiner defines the following defaults:

• small.comp.ls Dataframe of ubiquitous metabolites. Used by rmSmallCompounds.

• bridge Dataframe of attributes supported by Brigde Database. Used by fetchAttribute.

• bridge.organisms A list of bridge supported organisms. Used by fetchAttribute.

• bridge.web The base URL for Brigde Database webservices. Used by fetchAttribute.

Value

The defuult value for the given variable.

Author(s)

Ahmed Mohamed

Examples

Get the default list of small compounds (uniquitous metabolites).
NPMdefaults("small.comp.ls")

pathClassifier 21

pathClassifier HME3M Markov pathway classifier.

Description

HME3M Markov pathway classifier.

Usage

pathClassifier(paths, target.class, M, alpha = 1, lambda = 2,
hme3miter = 100, plriter = 1, init = "random")

Arguments

paths The training paths computed by pathsToBinary

target.class he label of the targe class to be classified. This label must be present as a label
within the paths\$y object

M Number of components within the paths to be extracted.

alpha The PLR learning rate. (between 0 and 1).

lambda The PLR regularization parameter. (between 0 and 2)

hme3miter Maximum number of HME3M iterations. It will stop when likelihood change is
< 0.001.

plriter Maximum number of PLR iteractions. It will stop when likelihood change is <
0.001.

init Specify whether to initialize the HME3M responsibilities with the 3M model -
random is recommended.

Details

Take care with selection of lambda and alpha - make sure you check that the likelihood is always
increasing.

Value

A list with the following elements. A list with the following values

h A dataframe with the EM responsibilities.

theta A dataframe with the Markov parameters for each component.

beta A dataframe with the PLR coefficients for each component.

proportions The probability of each HME3M component.
posterior.probs

The HME3M posterior probability.

likelihood The likelihood convergence history.

plrplr The posterior predictions from each components PLR model.

22 pathClassifier

path.probabilities

The 3M probabilities for each path belonging to each component.

params The parameters used to build the model.

y The binary response variable used by HME3M. A 1 indicates the location of the
target.class labels in paths\$y

perf The training set ROC curve AUC.

label The HME3M predicted label for each path.

component The HME3M component assignment for each path.

Author(s)

Timothy Hancock and Ichigaku Takigawa

References

Hancock, Timothy, and Mamitsuka, Hiroshi: A Markov Classification Model for Metabolic Path-
ways, Workshop on Algorithms in Bioinformatics (WABI) , 2009

Hancock, Timothy, and Mamitsuka, Hiroshi: A Markov Classification Model for Metabolic Path-
ways, Algorithms for Molecular Biology 2010

See Also

Other Path clustering & classification methods: pathCluster, pathsToBinary, plotClassifierROC,
plotClusterMatrix, plotPathClassifier, plotPathCluster, predictPathClassifier, predictPathCluster

Examples

Prepare a weighted reaction network.
Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

Assign edge weights based on Affymetrix attributes and microarray dataset.
Calculate Pearson's correlation.

data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot",
y=factor(colnames(ex_microarray)), bootstrap = FALSE)

Get ranked paths using probabilistic shortest paths.
ranked.p <- pathRanker(rgraph, method="prob.shortest.path",

K=20, minPathSize=6)

Convert paths to binary matrix.
ybinpaths <- pathsToBinary(ranked.p)
p.class <- pathClassifier(ybinpaths, target.class = "BCR/ABL", M = 3)

Contingency table of classification performance
table(ybinpaths$y,p.class$label)

pathCluster 23

Plotting the classifier results.
plotClassifierROC(p.class)
plotClusters(ybinpaths, p.class)

pathCluster 3M Markov mixture model for clustering pathways

Description

3M Markov mixture model for clustering pathways

Usage

pathCluster(ybinpaths, M, iter = 1000)

Arguments

ybinpaths The training paths computed by pathsToBinary.

M The number of clusters.

iter The maximum number of EM iterations.

Value

A list with the following items:

h The posterior probabilities that each path belongs to each cluster.

labels The cluster membership labels.

theta The probabilities of each gene for each cluster.

proportions The mixing proportions of each path.

likelihood The likelihood convergence history.

params The specific parameters used.

Author(s)

Ichigaku Takigawa

Timothy Hancock

References

Mamitsuka, H., Okuno, Y., and Yamaguchi, A. 2003. Mining biologically active patterns in metabolic
pathways using microarray expression profiles. SIGKDD Explor. News l. 5, 2 (Dec. 2003), 113-
121.

24 pathRanker

See Also

Other Path clustering & classification methods: pathClassifier, pathsToBinary, plotClassifierROC,
plotClusterMatrix, plotPathClassifier, plotPathCluster, predictPathClassifier, predictPathCluster

Examples

Prepare a weighted reaction network.
Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

Assign edge weights based on Affymetrix attributes and microarray dataset.
Calculate Pearson's correlation.

data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot", bootstrap = FALSE)

Get ranked paths using probabilistic shortest paths.
ranked.p <- pathRanker(rgraph, method="prob.shortest.path",

K=20, minPathSize=8)

Convert paths to binary matrix.
ybinpaths <- pathsToBinary(ranked.p)
p.cluster <- pathCluster(ybinpaths, M=2)
plotClusters(ybinpaths, p.cluster)

pathRanker Extracting and ranking paths from a network

Description

Given a weighted igraph object, path ranking finds a set of node/edge sequences (paths) to maxi-
mize the sum of edge weights. pathRanker(method="prob.shortest.path") extracts the K most
probable paths within a weighted network. pathRanker(method="pvalue") extracts a list of paths
whose sum of edge weights are significantly higher than random paths of the same length.

Usage

pathRanker(graph, method = c("prob.shortest.path", "pvalue"), start, end,
verbose = TRUE, ...)

Arguments

graph A weighted igraph object. Weights must be in edge.weights or weight edge
attributes.

method Which path ranking method to use.

start A list of start vertices, given by their vertex id.

pathRanker 25

end A list of terminal vertices, given by their vertex id.

verbose Whether to display the progress of the function.

... Method-specific parameters. See Details section.

Details

The input here is graph. A weight must be assigned to each edge. Bootstrapped Pearson correlation
edge weights can be assigned to each edge by assignEdgeWeights. However the specification of
the edge weight is flexible with the condition that increasing values indicate stronger relationships
between vertices.

Probabilistic Shortest Paths: pathRanker(method="prob.shortest.path") finds the K most
probable loopless paths given a weighted network. Before the paths are ranked the edge weights
are converted into probabilistic edge weights using the Empirical Cumulative Distribution (ECDF)
over all edge weights. This is called ECDF edge weight. The ECDF edge weight serves as a
probabilistic rank of the most important gene-gene interactions. The probabilistic nature of the
ECDF edge weights allow for a significance test to determine if a path contains any functional
structure or is simply a random walk. The probability of a path is simily the product of all ECDF
weights along the path. This is computed as a sum of the logs of the ECDF edge weights.
The follwing arguments can be passed to pathRanker(method="prob.shortest.path"):

K Maximum number of paths to extract. Defaults to 10.
minPathSize The minimum number of edges for each extracted path. Defualts to 1.
normalize Specify if you want to normalize the probabilistic edge weights (across different la-

bels) before extracting the paths. Defaults to TRUE.

P-value method: pathRanker(method="pvalue") searches all paths between the specified start
and end vertices, and if a significant path is found it returns it. However, It doesn’t search for the
best path between the start and terminal vertices, as there could be many paths which lead to the
same terminal vertex, and searching through all of them is time comsuming. We just stop when
the first significant path is found.
All provided edge weights are recaled from 0-1. Path significance is calculated based on the em-
pirical distribution of random paths of the same length. This can be estimated using samplePaths
and passed as an argument.
The follwing arguments can be passed to pathRanker(method="pvalue"):

sampledpaths The emripical results from samplePaths.
alpha The P value cut-off. Defualts to 0.01

Value

A list of paths where each path has the following items:

gene The ordered sequence of genes visited along the path.

compounds The ordered sequence of compounds visited along the path.

weights The ordered sequence of the log(ECDF edge weights) along the path.

distance The sum of the log(ECDF edge weights) along each path. (a sum of logs is a
product)

26 pathsToBinary

Author(s)

Timothy Hancock, Ichigaku Takigawa, Nicolas Wicker and Ahmed Mohamed

See Also

getPathsAsEIDs, extractPathNetwork

Other Path ranking methods: extractPathNetwork, getPathsAsEIDs, samplePaths

Examples

Prepare a weighted reaction network.
Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

Assign edge weights based on Affymetrix attributes and microarray dataset.
Calculate Pearson's correlation.

data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot",
y=factor(colnames(ex_microarray)), bootstrap = FALSE)

Get ranked paths using probabilistic shortest paths.
ranked.p <- pathRanker(rgraph, method="prob.shortest.path",

K=20, minPathSize=6)

Get significantly correlated paths using "p-valvue" method.
First, establish path score distribution by calling "samplePaths"
pathsample <- samplePaths(rgraph, max.path.length=10,

num.samples=100, num.warmup=10)

Get all significant paths with p<0.1
significant.p <- pathRanker(rgraph, method = "pvalue",

sampledpaths = pathsample ,alpha=0.1)

pathsToBinary Converts the result from pathRanker into something suitable for path-
Classifier or pathCluster.

Description

Converts the result from pathRanker into something suitable for pathClassifier or pathCluster.

Usage

pathsToBinary(ypaths)

pathsToBinary 27

Arguments

ypaths The result of pathRanker.

Details

Converts a set of pathways from pathRanker into a list of binary pathway matrices. If the pathways
are grouped by a response label then the pathsToBinary returns a list labeled by response class where
each element is the binary pathway matrix for each class. If the pathways are from pathRanker
then a list wiht a single element containing the binary pathway matrix is returned. To look up the
structure of a specific binary path in the corresponding ypaths object simply use matrix index by
calling ypaths[[ybinpaths\$pidx[i,]]], where i is the row in the binary paths object you wish
to reference.

Value

A list with the following elements.

paths All paths within ypaths converted to a binary string and concatenated into the
one matrix.

y The response variable.

pidx An matrix where each row specifies the location of that path within the ypaths
object.

Author(s)

Timothy Hancock and Ichigaku Takigawa

See Also

Other Path clustering & classification methods: pathClassifier, pathCluster, plotClassifierROC,
plotClusterMatrix, plotPathClassifier, plotPathCluster, predictPathClassifier, predictPathCluster

Examples

Prepare a weighted reaction network.
Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

Assign edge weights based on Affymetrix attributes and microarray dataset.
Calculate Pearson's correlation.

data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot",
y=factor(colnames(ex_microarray)), bootstrap = FALSE)

Get ranked paths using probabilistic shortest paths.
ranked.p <- pathRanker(rgraph, method="prob.shortest.path",

K=20, minPathSize=6)

28 plotAllNetworks

Convert paths to binary matrix.
ybinpaths <- pathsToBinary(ranked.p)
p.cluster <- pathCluster(ybinpaths, M=3)
plotClusters(ybinpaths, p.cluster, col=c("red", "green", "blue"))

plotAllNetworks Higlighting ranked paths over multiple network representations.

Description

This function highlighting ranked paths over different network representations, metabolic, reaction
and gene networks. The functions finds equivalent paths across different networks and marks them.

Usage

plotAllNetworks(paths, metabolic.net = NULL, reaction.net = NULL,
gene.net = NULL, path.clusters = NULL, plot.clusters = TRUE,
col.palette = palette(), layout = layout.auto, ...)

Arguments

paths The result of pathRanker.

metabolic.net A bipartite metabolic network.

reaction.net A reaction network, resulting from makeReactionNetwork.

gene.net A gene network, resulting from makeGeneNetwork.

path.clusters The result from pathCluster or pathClassifier.

plot.clusters Whether to plot clustering information, as generated by plotClusters

col.palette A color palette, or a palette generating function (ex:

col.palette=rainbow

).

layout Either a graph layout function, or a two-column matrix specifiying vertex coor-
dinates.

... Additional arguments passed to plotNetwork.

Value

Highlights the path list over all provided networks.

Author(s)

Ahmed Mohamed

plotClassifierROC 29

See Also

Other Plotting methods: colorVertexByAttr, layoutVertexByAttr, plotClassifierROC, plotClusterMatrix,
plotCytoscapeGML, plotNetwork, plotPathClassifier, plotPaths

Examples

Prepare a weighted reaction network.
Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

Assign edge weights based on Affymetrix attributes and microarray dataset.
Calculate Pearson's correlation.

data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot",
y=factor(colnames(ex_microarray)), bootstrap = FALSE)

Get ranked paths using probabilistic shortest paths.
ranked.p <- pathRanker(rgraph, method="prob.shortest.path",

K=20, minPathSize=6)

plotAllNetworks(ranked.p, metabolic.net = ex_sbml, reaction.net = rgraph,
vertex.label = "", vertex.size = 4)

plotClassifierROC Diagnostic plots for pathClassifier.

Description

Diagnostic plots for pathClassifier.

Usage

plotClassifierROC(mix)

Arguments

mix The result from pathClassifier.

Value

Diagnostic plots of the result from pathClassifier. itemTopROC curves for the posterior probabili-
ties (mix\$posterior.probs) and for each HME3M component (mix\$h). This gives information
about what response label each relates to. A ROC curve with an AUC < 0.5 relates to y = 0. Con-
versely ROC curves with AUC > 0.5 relate to y = 1. itemBottomThe likelihood convergence history
for the HME3M model. If the parameters alpha or lambda are set too large then the likelihood may
decrease.

30 plotClusterMatrix

Author(s)

Timothy Hancock and Ichigaku Takigawa

See Also

Other Path clustering & classification methods: pathClassifier, pathCluster, pathsToBinary,
plotClusterMatrix, plotPathClassifier, plotPathCluster, predictPathClassifier, predictPathCluster

Other Plotting methods: colorVertexByAttr, layoutVertexByAttr, plotAllNetworks, plotClusterMatrix,
plotCytoscapeGML, plotNetwork, plotPathClassifier, plotPaths

plotClusterMatrix Plots the structure of all path clusters

Description

Plots the structure of all path clusters

Usage

plotClusterMatrix(ybinpaths, clusters, col = rainbow(clusters$params$M),
grid = TRUE)

plotClusterProbs(clusters, col = rainbow(clusters$params$M))

plotClusters(ybinpaths, clusters, col, ...)

Arguments

ybinpaths The training paths computed by pathsToBinary.

clusters The pathway cluster model trained by pathCluster or pathClassifier.

col Colors for each path cluster.

grid A logical, whether to add a grid to the plot

... Extra paramaters passed to plotClusterMatrix

Value

plotClusterMatrix plots an image of all paths the training dataset. Rows are the paths and
columns are the genes (features) included within each path. Paths are colored according to cluster
membership.

plotClusterProbs The training set posterior probabilities for each path belonging to a 3M com-
ponent.

plotClusters: combines the two plots produced by plotClusterProbs and plotClusterMatrix.

plotCytoscapeGML 31

Author(s)

Ahmed Mohamed

See Also

Other Path clustering & classification methods: pathClassifier, pathCluster, pathsToBinary,
plotClassifierROC, plotPathClassifier, plotPathCluster, predictPathClassifier, predictPathCluster

Other Plotting methods: colorVertexByAttr, layoutVertexByAttr, plotAllNetworks, plotClassifierROC,
plotCytoscapeGML, plotNetwork, plotPathClassifier, plotPaths

Examples

Prepare a weighted reaction network.
Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

Assign edge weights based on Affymetrix attributes and microarray dataset.
Calculate Pearson's correlation.
data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot",
y=factor(colnames(ex_microarray)), bootstrap = FALSE)

Get ranked paths using probabilistic shortest paths.
ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
K=20, minPathSize=8)

Convert paths to binary matrix.
ybinpaths <- pathsToBinary(ranked.p)
p.cluster <- pathCluster(ybinpaths, M=2)
plotClusters(ybinpaths, p.cluster, col=c("red", "blue"))

plotCytoscapeGML Plots an annotated igraph object in Cytoscape.

Description

plotCytoscape function has been removed because RCytoscape is no longer prensent in Biocon-
ductor. Future plans will use RCy3 for Cytoscape plotting, once RCy3 is supported on MacOS
and Windows. plotCytoscapeGML exports the network plot in GML format, that can be later im-
ported into Cytoscape (using "import network from file" option). This fuction is compatible with
all Cytoscape versions.

Usage

plotCytoscapeGML(graph, file, layout = layout.auto, vertex.size,
vertex.label, vertex.shape, vertex.color, edge.color)

32 plotCytoscapeGML

Arguments

graph An annotated igraph object.

file Output GML file name to which the network plot is exported.

layout Either a graph layout function, or a two-column matrix specifiying vertex coor-
dinates.

vertex.size Vertex size. If missing, the vertex attribute "size" (

V(g)$size)

) will be used.

vertex.label Vertex labels. If missing, the vertex attribute "label" (

V(g)$label)

) will be used. If missing, vertices are labeled by their name.

vertex.shape Vertex shape in one of igraph shapes. If missing, the vertex attribute "shape" (

V(g)$shape)

) will be used. Shapes are converted from igraph convention to Cytoscape
convention. "square","rectangle" and "vrectangle" are converted to "RECT",
"csquare" and "crectangle" are converted to "ROUND_RECT", all other shapes
are considered "ELLIPSE"

vertex.color A color or a list of colors for vertices. Vetices with multiple colors are not
supported. If missing, the vertex attribute "color" (

V(g)$color)

) will be used.

edge.color A color or a list of colors for edges. If missing, the edge attribute "color" (

E(g)$color)

) will be used.

Value

For plotCytoscapeGML, results are written to file.

Author(s)

Ahmed Mohamed

See Also

Other Plotting methods: colorVertexByAttr, layoutVertexByAttr, plotAllNetworks, plotClassifierROC,
plotClusterMatrix, plotNetwork, plotPathClassifier, plotPaths

plotNetwork 33

Examples

data("ex_sbml")
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
v.layout <- layoutVertexByAttr(rgraph, "compartment")

v.color <- colorVertexByAttr(rgraph, "compartment")

Export network plot to GML file
plotCytoscapeGML(rgraph, file="example.gml", layout=v.layout,

vertex.color=v.color, vertex.size=10)

plotNetwork Plots an annotated igraph object.

Description

This function is a wrapper function for plot.igraph, with 2 main additions. 1. Add the ability to
color vertices by their attributes (see examples), accompanied by an inofrmative legend. 2. Resize
vertex.size, edge.arrow.size, label.cex according to the plot size and the size of the network.

Usage

plotNetwork(graph, vertex.color, col.palette = palette(),
layout = layout.auto, legend = TRUE, ...)

Arguments

graph An annotated igraph object.

vertex.color A list of colors for vertices, or an attribute names (ex: "pathway") by which ver-
tices will be colored. Complex attributes, where a vertex belongs to more than
one group, are supported. This can also be the output of colorVertexByAttr.

col.palette A color palette, or a palette generating function (ex:

col.palette=rainbow

).

layout Either a graph layout function, or a two-column matrix specifiying vertex coor-
dinates.

legend Wheter to plot a legend. The legend is only plotted if vertices are colored by
attribute values.

... Additional arguments passed to plot.igraph.

Value

Produces a plot of the network.

34 plotPathClassifier

Author(s)

Ahmed Mohamed

See Also

Other Plotting methods: colorVertexByAttr, layoutVertexByAttr, plotAllNetworks, plotClassifierROC,
plotClusterMatrix, plotCytoscapeGML, plotPathClassifier, plotPaths

Examples

data("ex_kgml_sig")
plotNetwork(ex_kgml_sig, vertex.color="pathway")
plotNetwork(ex_kgml_sig, vertex.color="pathway", col.palette=heat.colors)
plotNetwork(ex_kgml_sig, vertex.color="pathway",

col.palette=c("red", "green","blue","grey"))

plotPathClassifier Plots the structure of specified path found by pathClassifier.

Description

Plots the structure of specified path found by pathClassifier.

Usage

plotPathClassifier(ybinpaths, obj, m, tol = NULL)

Arguments

ybinpaths The training paths computed by pathsToBinary

obj The pathClassifier pathClassifier.

m The path component to view.

tol A tolerance for 3M parameter theta which is the probability for each edge
within each cluster. If the tolerance is set all edges with a theta below that
tolerance will be removed from the plot.

Value

Produces a plot of the paths with the path probabilities and prediction probabilities and ROC curve
overlayed.

Center Plot An image of all paths the training dataset. Rows are the paths and columns
are the genes (vertices) included within each pathway. A colour within image
indicates if a particular gene (vertex) is included within a specific path. Colours
flag whether a path belongs to the current HME3M component (P > 0.5).

plotPathClassifier 35

Center Right The training set posterior probabilities for each path belonging to the current 3M
component.

Center Top The ROC curve for this HME3M component.

Top Bar Plots Theta: The 3M component probabilities - indicates the importance of each edge
is to a path. Beta: The PLR coefficient - the magnitude indicates the importance
of the edge to the classify the response.

Author(s)

Timothy Hancock and Ichigaku Takigawa

See Also

Other Path clustering & classification methods: pathClassifier, pathCluster, pathsToBinary,
plotClassifierROC, plotClusterMatrix, plotPathCluster, predictPathClassifier, predictPathCluster

Other Plotting methods: colorVertexByAttr, layoutVertexByAttr, plotAllNetworks, plotClassifierROC,
plotClusterMatrix, plotCytoscapeGML, plotNetwork, plotPaths

Examples

Prepare a weighted reaction network.
Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

Assign edge weights based on Affymetrix attributes and microarray dataset.
Calculate Pearson's correlation.

data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot",
y=factor(colnames(ex_microarray)), bootstrap = FALSE)

Get ranked paths using probabilistic shortest paths.
ranked.p <- pathRanker(rgraph, method="prob.shortest.path",

K=20, minPathSize=6)

Convert paths to binary matrix.
ybinpaths <- pathsToBinary(ranked.p)
p.class <- pathClassifier(ybinpaths, target.class = "BCR/ABL", M = 3)

Plotting the classifier results.
plotClassifierROC(p.class)
plotClusters(ybinpaths, p.class)

36 plotPathCluster

plotPathCluster Plots the structure of specified path cluster

Description

Plots the structure of specified path found by pathCluster.

Usage

plotPathCluster(ybinpaths, clusters, m, tol = NULL)

Arguments

ybinpaths The training paths computed by pathsToBinary.

clusters The pathway cluster model trained by pathCluster or pathClassifier.

m The path cluster to view.

tol A tolerance for 3M parameter theta which is the probability for each edge
within each cluster. If the tolerance is set all edges with a theta below that
tolerance will be removed from the plot.

Value

Produces a plot of the paths with the path probabilities and cluster membership probabilities.

Center Plot An image of all paths the training dataset. Rows are the paths and columns are
the genes (features) included within each path.

Right The training set posterior probabilities for each path belonging to the current 3M
component.

Top Bar Plots Theta, The 3M component probabilities - indicates the importance of each edge
to a pathway.

Author(s)

Timothy Hancock and Ichigaku Takigawa

See Also

Other Path clustering & classification methods: pathClassifier, pathCluster, pathsToBinary,
plotClassifierROC, plotClusterMatrix, plotPathClassifier, predictPathClassifier, predictPathCluster

plotPaths 37

Examples

Prepare a weighted reaction network.
Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

Assign edge weights based on Affymetrix attributes and microarray dataset.
Calculate Pearson's correlation.

data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot", bootstrap = FALSE)

Get ranked paths using probabilistic shortest paths.
ranked.p <- pathRanker(rgraph, method="prob.shortest.path",

K=20, minPathSize=8)

Convert paths to binary matrix.
ybinpaths <- pathsToBinary(ranked.p)
p.cluster <- pathCluster(ybinpaths, M=2)
plotPathCluster(ybinpaths, p.cluster, m=2, tol=0.05)

plotPaths Plots an annotated igraph object higlighting ranked paths.

Description

This function plots a network highlighting ranked paths. If path.clusters are provided, paths in
the same cluster are assigned similar colors.

Usage

plotPaths(paths, graph, path.clusters = NULL, col.palette = palette(),
layout = layout.auto, ...)

Arguments

paths The result of pathRanker.

graph An annotated igraph object.

path.clusters The result from pathCluster or pathClassifier.

col.palette A color palette, or a palette generating function (ex:

col.palette=rainbow

).

layout Either a graph layout function, or a two-column matrix specifiying vertex coor-
dinates.

... Additional arguments passed to plotNetwork.

38 predictPathClassifier

Value

Produces a plot of the network with paths highlighted. If paths are computed for several labels
(sample categories), a plot is created for each label.

Author(s)

Ahmed Mohamed

See Also

Other Plotting methods: colorVertexByAttr, layoutVertexByAttr, plotAllNetworks, plotClassifierROC,
plotClusterMatrix, plotCytoscapeGML, plotNetwork, plotPathClassifier

Examples

Prepare a weighted reaction network.
Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

Assign edge weights based on Affymetrix attributes and microarray dataset.
Calculate Pearson's correlation.

data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot",
y=factor(colnames(ex_microarray)), bootstrap = FALSE)

Get ranked paths using probabilistic shortest paths.
ranked.p <- pathRanker(rgraph, method="prob.shortest.path",

K=20, minPathSize=6)

Plot paths.
plotPaths(ranked.p, rgraph)

Convert paths to binary matrix, build a classifier.
ybinpaths <- pathsToBinary(ranked.p)
p.class <- pathClassifier(ybinpaths, target.class = "BCR/ABL", M = 3)

Plotting with clusters, on a metabolic graph.
plotPaths(ranked.p, ex_sbml, path.clusters=p.class)

predictPathClassifier Predicts new paths given a pathClassifier model.

Description

Predicts new paths given a pathClassifier model.

predictPathClassifier 39

Usage

predictPathClassifier(mix, newdata)

Arguments

mix The result from pathClassifier.

newdata A data.frame containing the new paths to be classified.

Value

A list with the following elements.

h The posterior probabilities for each HME3M component.
posterior.probs

The posterior probabilities for HME3M model to classify the response.

label A vector indicating the HME3M cluster membership.

component The HME3M component membership for each pathway.
path.probabilities

The 3M path probabilities.
plr.probabilities

The PLR predictions for each component.

Author(s)

Timothy Hancock and Ichigaku Takigawa

See Also

Other Path clustering & classification methods: pathClassifier, pathCluster, pathsToBinary,
plotClassifierROC, plotClusterMatrix, plotPathClassifier, plotPathCluster, predictPathCluster

Examples

Prepare a weighted reaction network.
Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

Assign edge weights based on Affymetrix attributes and microarray dataset.
Calculate Pearson's correlation.

data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot",
y=factor(colnames(ex_microarray)), bootstrap = FALSE)

Get ranked paths using probabilistic shortest paths.
ranked.p <- pathRanker(rgraph, method="prob.shortest.path",

K=20, minPathSize=6)

40 predictPathCluster

Convert paths to binary matrix.
ybinpaths <- pathsToBinary(ranked.p)
p.class <- pathClassifier(ybinpaths, target.class = "BCR/ABL", M = 3)

Just an example of how to predict cluster membership
pclass.pred <- predictPathCluster(p.class, ybinpaths$paths)

predictPathCluster Predicts new paths given a pathCluster model

Description

Predicts new paths given a pathCluster model.

Usage

predictPathCluster(pfit, newdata)

Arguments

pfit The pathway cluster model trained by pathCluster or pathClassifier.

newdata The binary pathway dataset to be assigned a cluster label.

Value

A list with the following elements:

labels a vector indicating the 3M cluster membership.
posterior.probs a matrix of posterior probabilities for each path belonging to each cluster.

Author(s)

Ichigaku Takigawa

Timothy Hancock

See Also

Other Path clustering & classification methods: pathClassifier, pathCluster, pathsToBinary,
plotClassifierROC, plotClusterMatrix, plotPathClassifier, plotPathCluster, predictPathClassifier

Examples

Prepare a weighted reaction network.
Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

registerMemoryErr 41

Assign edge weights based on Affymetrix attributes and microarray dataset.
Calculate Pearson's correlation.

data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot", bootstrap = FALSE)

Get ranked paths using probabilistic shortest paths.
ranked.p <- pathRanker(rgraph, method="prob.shortest.path",

K=20, minPathSize=8)

Convert paths to binary matrix.
ybinpaths <- pathsToBinary(ranked.p)
p.cluster <- pathCluster(ybinpaths, M=2)

just an example of how to predict cluster membership.
pclust.pred <- predictPathCluster(p.cluster,ybinpaths$paths)

registerMemoryErr Internal method to register memery errors.

Description

Internal method to register memery errors, caused by compiled code. This method is used only by
the package, and should not be invoked by users.

Usage

registerMemoryErr(method)

Arguments

method The mathod which generated the error.

Author(s)

Ahmed Mohamed

reindexNetwork Replaces current vertex ids with chosen attribute.

Description

This function allows users to replace vertex ids with another attribute, calculating connectivities
based on the new attribute.

42 reindexNetwork

Usage

reindexNetwork(graph, v.attr)

Arguments

graph An annotated igraph object.
v.attr Name of the attribute to use as vertex ids.

Details

This functions can be very useful when merging networks constructed from different databases.
For example, to match a network created from Reactome to a KEGG network, you can reindex
the vertices by "miriam.kegg.compound" attribute. Another usage is to remove duplicated vertices
(in case of different subcellular compartments, for example). if a network has ATP_membrane &
ATP_cytoplasm vertices, reindexing by chemical name will collapse them into one ‘ATP‘ vertex.

Value

A new graph with vertices expanded.

Author(s)

Ahmed Mohamed

See Also

Other Network processing methods: expandComplexes, makeMetaboliteNetwork, makeReactionNetwork,
rmSmallCompounds, simplifyReactionNetwork, vertexDeleteReconnect

Examples

Make a gene network from a reaction network.
data(ex_sbml) # A bipartite metbaolic network.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
ggraph <- makeGeneNetwork(rgraph)

Expand vertices into their contituent genes.
data(ex_kgml_sig) # Ras and chemokine signaling pathways in human

ggraph <- expandComplexes(ex_kgml_sig, v.attr = "miriam.ncbigene",
keep.parent.attr= c("^pathway", "^compartment"))

Create a separate vertex for each compartment. This is useful in duplicating
metabolite vertices in a network.
Not run:
graph <- expandComplexes(graph, v.attr = "compartment",

keep.parent.attr = "all",
expansion.method = "duplicate",
missing.method = "keep")

End(Not run)

rmSmallCompounds 43

rmSmallCompounds Remove uniquitous compounds from a metabolic network

Description

This function removes uniquitous compounds (metabolites connected to numerous reactions) from
a metabolic network.These compounds are reaction cofactors and currency compounds, such as
ATP, CO2, etc. A path through these metabolites may not be bioloigcally meaningful. The defualt
small compound list is derived from Reactome, containing keeg.compound, pubchem.compound,
ChEBI and CAS identifiers.

Usage

rmSmallCompounds(graph, method = c("remove", "duplicate"),
small.comp.ls = NPMdefaults("small.comp.ls"))

Arguments

graph A metabolic network.

method How to handle small compounds. Either simply delete these vertices "remove"
(default), or make a separate vertex for each reaction they participate in "duplicate".

small.comp.ls A list of small compounds to be used.

Value

A modified graph, with the small compounds removed or duplicated.

Author(s)

Ahmed Mohamed

See Also

Other Network processing methods: expandComplexes, makeMetaboliteNetwork, makeReactionNetwork,
reindexNetwork, simplifyReactionNetwork, vertexDeleteReconnect

Examples

data(ex_sbml)

sbml.removed <- rmSmallCompounds(ex_sbml, method="remove")

44 samplePaths

samplePaths Creates a set of sample path p-values for each length given a weighted
network

Description

Randomly traverses paths of increasing lengths within a set network to create an empirical pathway
distribution for more accurate determination of path significance.

Usage

samplePaths(graph, max.path.length, num.samples = 1000,
num.warmup = 10, verbose = TRUE)

Arguments

graph A weighted igraph object. Weights must be in edge.weights or weight edge
attributes.

max.path.length

The maxmimum path length.

num.samples The numner of paths to sample

num.warmup The number of warm up paths to sample.

verbose Whether to display the progress of the function.

Details

Can take a bit of time.

Value

A matrix where each row is a path length and each column is the number of paths sampled.

Author(s)

Timothy Hancock

Ahmed Mohamed

See Also

Other Path ranking methods: extractPathNetwork, getPathsAsEIDs, pathRanker

SBML2igraph 45

Examples

Prepare a weighted reaction network.
Conver a metabolic network to a reaction network.
data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

Assign edge weights based on Affymetrix attributes and microarray dataset.
Calculate Pearson's correlation.

data(ex_microarray) # Part of ALL dataset.
rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
weight.method = "cor", use.attr="miriam.uniprot",
y=factor(colnames(ex_microarray)), bootstrap = FALSE)

Get significantly correlated paths using "p-valvue" method.
First, establish path score distribution by calling "samplePaths"
pathsample <- samplePaths(rgraph, max.path.length=10,

num.samples=100, num.warmup=10)

Get all significant paths with p<0.1
significant.p <- pathRanker(rgraph, method = "pvalue",

sampledpaths = pathsample ,alpha=0.1)

SBML2igraph Processes SBML files into igraph objects

Description

This function takes SBML files as input, and returns either a metabolic or a signaling network as
output.

Usage

SBML2igraph(filename, parse.as = c("metabolic", "signaling"),
miriam.attr = "all", gene.attr, expand.complexes, verbose = TRUE)

Arguments

filename A character vector containing the SBML files to be processed. If a directory path
is provided, all *.xml and *.sbml files in it and its subdirectories are included.

parse.as Whether to process file into a metabolic or a signaling network.

miriam.attr A list of annotation attributes to be extracted. If "all", then all attibutes written
in MIRIAM guidelines (see Details) are extracted (Default). If "none", then no
attributes are extracted. Otherwise, only attributes matching those specified are
extracted.

gene.attr An attribute to distinguish species representing genes from those representing
small molecules (see Details). Ignored if parse.as="metabolic".

46 SBML2igraph

expand.complexes

Split protein complexes into individual gene nodes. Ignored if parse.as="metabolic",
or when gene.attr is not provided.

verbose Whether to display the progress of the function.

Details

Users can specify whether files are processes as metabolic or signaling networks.

Metabolic networks are given as bipartite graphs, where metabolites and reactions represent vertex
types. This is constructed from ListOfReactions in SBML file, connecting them to their cor-
responding substrates and products (ListOfSpecies). Each reaction vertex has genes attribute,
listing all modifiers of this reaction. As a general rule, reactions inherit all annotation attributes
of its catalyzig genes.

Signaling network have genes as vertices and edges represent interactions. Since SBML format
may represent singling events as reaction, all species are assumed to be genes (rather than small
molecules). For a simple path S0 -> R1 -> S1, in signaling network, the path will be S0 -> M(R1)
-> S1 where M(R1) is R1 modifier(s). To ditiguish gene species from small molecules, user can
provide gene.attr (for example: miriam.uniprot or miriam.ncbigene) where only annotated
species are considered genes.

All annotation attributes written according to MIRIAM guidlines (either urn:miriam:xxx:xxx or
http://identifiers.org/xxx/xxx) are etxracted by default. Non-conforming attributes can be
extracted by specifying miriam.attr.

To generate a genome scale network, simply provide a list of files to be parsed, or put all file in a
directory, as pass the directory path as filename

Note: This function requires libSBML installed (Please see the installation instructions in the Vi-
gnette). Some SBML level-3 files may requires additional libraries also (An infomative error will be
displayed when parsing such files). Please visit http://sbml.org/Documents/Specifications/
SBML_Level_3/Packages for more information.

Value

An igraph object, representing a metbolic or a signaling network.

Author(s)

Ahmed Mohamed

See Also

Other Database extraction methods: KGML2igraph, biopax2igraph

Examples

if(is.loaded("readsbmlfile")){ # This is false if libSBML wasn't available at installation.
filename <- system.file("extdata", "porphyrin.sbml", package="NetPathMiner")

Process SBML file as a metabolic network
g <- SBML2igraph(filename)

http://sbml.org/Documents/Specifications/SBML_Level_3/Packages
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages

simplifyReactionNetwork 47

plotNetwork(g)

Process SBML file as a signaling network
g <- SBML2igraph(filename, parse.as="signaling",

gene.attr="miriam.uniprot",expand.complexes=TRUE)
dev.new()
plotNetwork(g)

}

simplifyReactionNetwork

Removes reactions with no gene annotations

Description

This function removes reaction vertices with no gene annotations as indicated by the parameter
gene.attr, and connect their neighbour vertices to preserve graph connectivity. This is particularly
meaningful when reactions are translocation or spontaneous reactions, which are not catalysed by
genes.

Usage

simplifyReactionNetwork(reaction.graph, gene.attr = "genes",
remove.missing.genes = TRUE,
reconnect.threshold = vcount(reaction.graph))

Arguments

reaction.graph A reaction network.
gene.attr The attribute to be considered as "genes". Reactions missing this annotation,

will be removed.
remove.missing.genes

If FALSE, only tranlocation and spontaneous reactions are removed, otherwise
all rections with no gene annotations are removed.

reconnect.threshold

An argument passed to vertexDeleteReconnect

Value

A simplified reaction network.

Author(s)

Ahmed Mohamed

See Also

Other Network processing methods: expandComplexes, makeMetaboliteNetwork, makeReactionNetwork,
reindexNetwork, rmSmallCompounds, vertexDeleteReconnect

48 stdAttrNames

Examples

data(ex_sbml)
rgraph <- makeReactionNetwork(ex_sbml, simplify=FALSE)

Removes all reaction nodes with no annotated genes.
rgraph <- simplifyReactionNetwork(rgraph, remove.missing.genes=TRUE)

stdAttrNames MIRIAM annotation attributes

Description

These functions deals with conforming with MIRIAM annotation guidelines, conversion and map-
ping between MIRIAM identifiers.

Usage

stdAttrNames(graph, return.value = c("matches", "graph"))

fetchAttribute(graph, organism = "Homo sapiens", target.attr,
source.attr, bridge.web = NPMdefaults("bridge.web"))

Arguments

graph An annotated igraph object.

return.value Specify whether to return the names of matched standard annotations, or modify
the graph attribute names to match the standards.

organism The latin name of the organism (Case-sensitive).

target.attr The target annotation, given as MIRIAM standard in the format miriam.xxx

source.attr The source annotation attribute from graph

bridge.web The base URL for Brigde Database webservices.

Value

For stdAttrNames, matches gives the original attribute names and their MIRIAM version. Since
this is done by simple text matching, mismatches may occur for ambiguous annotations (such as
GO, EC number). graph returns the input graph with attribute names standardized.

For fetchAttribute, the input graph with the fetched attribute mapped to vertices.

Author(s)

Ahmed Mohamed

See Also

Other Attribute handling methods: getAttrStatus

toGraphNEL 49

Examples

data(ex_kgml_sig) # Ras and chemokine signaling pathways in human
Modify attribute names to match MIRIAM standard annotations.
graph <- stdAttrNames(ex_kgml_sig, "graph")

Use Attribute fetcher to get affymetrix probeset IDs for network vertices.
Not run:
graph <- fetchAttribute(graph, organism="Homo sapiens",

target.attr="miriam.affy.probeset")

End(Not run)

toGraphNEL Converts an annotated igraph object to graphNEL

Description

Converts an annotated igraph object to graphNEL

Usage

toGraphNEL(graph, export.attr = "")

Arguments

graph An annotated igraph object..

export.attr A regex experssion representing vertex attributes to be exported to the new
graphNEL object. Supplying an empty string "" (default) will export all at-
tributes.

Value

A graphNEL object.

Author(s)

Ahmed Mohamed

Examples

data(ex_kgml_sig) # Ras and chemokine signaling pathways in human
graphNEL <- toGraphNEL(ex_kgml_sig, export.attr="^miriam.")

50 vertexDeleteReconnect

vertexDeleteReconnect Network editing: removing vertices and connecting their neighbours

Description

This function removes vertices given as vids and connects their neighbours as long as the shortest
path beween the neighbours are below the reconnect.threshold.

Usage

vertexDeleteReconnect(graph, vids, reconnect.threshold = vcount(graph),
copy.attr = NULL)

Arguments

graph A reaction network.

vids Vertex ids to be removed.
reconnect.threshold

If the shortest path between vertices is larger than this threshold, they are not
reconnected.

copy.attr A function, or a list of functions, combine edge attributes. Edge attributes of new
edges (between reconnected neighbours) are obtained by combining original
edges attributes along the shortest path between reconnected neighbors.

Value

A modified graph.

Author(s)

Ahmed Mohamed

See Also

Other Network processing methods: expandComplexes, makeMetaboliteNetwork, makeReactionNetwork,
reindexNetwork, rmSmallCompounds, simplifyReactionNetwork

Examples

Remove all reaction vertices from a bipartite metabolic network
keeping only metabolite vertices.
data(ex_sbml)
graph <- vertexDeleteReconnect(ex_sbml, vids=which(V(ex_sbml)$reactions))

Index

∗ Attribute handling methods
getAttrStatus, 11
stdAttrNames, 48

∗ Database extraction methods
biopax2igraph, 5
KGML2igraph, 16
SBML2igraph, 45

∗ Network processing methods
expandComplexes, 7
makeMetaboliteNetwork, 18
makeReactionNetwork, 19
reindexNetwork, 41
rmSmallCompounds, 43
simplifyReactionNetwork, 47
vertexDeleteReconnect, 50

∗ Path clustering & classification methods
pathClassifier, 21
pathCluster, 23
pathsToBinary, 26
plotClassifierROC, 29
plotClusterMatrix, 30
plotPathClassifier, 34
plotPathCluster, 36
predictPathClassifier, 38
predictPathCluster, 40

∗ Path ranking methods
extractPathNetwork, 9
getPathsAsEIDs, 15
pathRanker, 24
samplePaths, 44

∗ Plotting methods
colorVertexByAttr, 6
layoutVertexByAttr, 17
plotAllNetworks, 28
plotClassifierROC, 29
plotClusterMatrix, 30
plotCytoscapeGML, 31
plotNetwork, 33
plotPathClassifier, 34

plotPaths, 37

assignEdgeWeights, 3, 25

biopax2igraph, 5, 17, 46

colorVertexByAttr, 6, 18, 29–35, 38

ex_biopax, 10
ex_kgml_sig, 10
ex_microarray, 10
ex_sbml, 11
expandComplexes, 3, 7, 19, 42, 43, 47, 50
extractPathNetwork, 9, 15, 26, 44

fetchAttribute, 20
fetchAttribute (stdAttrNames), 48

getAttribute (getAttrStatus), 11
getAttrNames (getAttrStatus), 11
getAttrStatus, 3, 11, 48
getGeneSetNetworks, 12, 14
getGeneSets, 13, 14
getPathsAsEIDs, 9, 15, 26, 44
graph_attr_names, 11
grid, 30

KGML2igraph, 6, 16, 46

layout_with_fr, 17
layout_with_kk, 17
layoutVertexByAttr, 7, 17, 29–32, 34, 35, 38

makeGeneNetwork, 28
makeGeneNetwork (expandComplexes), 7
makeMetaboliteNetwork, 8, 18, 19, 42, 43,

47, 50
makeReactionNetwork, 8, 19, 19, 28, 42, 43,

47, 50
max, 4
median, 4

51

52 INDEX

NetPathMiner (NetPathMiner-package), 3
NetPathMiner-package, 3
NPM (NetPathMiner-package), 3
NPMdefaults, 20

pathClassifier, 21, 24, 27–31, 34–37, 39, 40
pathCluster, 22, 23, 27, 28, 30, 31, 35–37,

39, 40
pathRanker, 9, 15, 24, 27, 28, 37, 44
pathsToBinary, 21–24, 26, 30, 31, 34–36, 39,

40
plot.igraph, 33
plotAllNetworks, 7, 18, 28, 30–32, 34, 35, 38
plotClassifierROC, 7, 18, 22, 24, 27, 29, 29,

31, 32, 34–36, 38–40
plotClusterMatrix, 7, 18, 22, 24, 27, 29, 30,

30, 32, 34–36, 38–40
plotClusterProbs (plotClusterMatrix), 30
plotClusters, 28
plotClusters (plotClusterMatrix), 30
plotCytoscapeGML, 7, 18, 29–31, 31, 34, 35,

38
plotNetwork, 7, 18, 28–32, 33, 35, 37, 38
plotPathClassifier, 7, 18, 22, 24, 27,

29–32, 34, 34, 36, 38–40
plotPathCluster, 22, 24, 27, 30, 31, 35, 36,

39, 40
plotPaths, 7, 18, 29–32, 34, 35, 37
predictPathClassifier, 22, 24, 27, 30, 31,

35, 36, 38, 40
predictPathCluster, 22, 24, 27, 30, 31, 35,

36, 39, 40

readBiopax, 5, 10
regex, 7, 11, 49
registerMemoryErr, 41
reindexNetwork, 8, 19, 41, 43, 47, 50
rmAttribute (getAttrStatus), 11
rmSmallCompounds, 8, 19, 20, 42, 43, 47, 50

samplePaths, 9, 15, 25, 26, 44
SBML2igraph, 6, 17, 45
setAttribute (getAttrStatus), 11
simplifyReactionNetwork, 8, 19, 42, 43, 47,

50
stdAttrNames, 12, 48

toGraphNEL, 49

vertexDeleteReconnect, 8, 19, 42, 43, 47, 50

	NetPathMiner-package
	assignEdgeWeights
	biopax2igraph
	colorVertexByAttr
	expandComplexes
	extractPathNetwork
	ex_biopax
	ex_kgml_sig
	ex_microarray
	ex_sbml
	getAttrStatus
	getGeneSetNetworks
	getGeneSets
	getPathsAsEIDs
	KGML2igraph
	layoutVertexByAttr
	makeMetaboliteNetwork
	makeReactionNetwork
	NPMdefaults
	pathClassifier
	pathCluster
	pathRanker
	pathsToBinary
	plotAllNetworks
	plotClassifierROC
	plotClusterMatrix
	plotCytoscapeGML
	plotNetwork
	plotPathClassifier
	plotPathCluster
	plotPaths
	predictPathClassifier
	predictPathCluster
	registerMemoryErr
	reindexNetwork
	rmSmallCompounds
	samplePaths
	SBML2igraph
	simplifyReactionNetwork
	stdAttrNames
	toGraphNEL
	vertexDeleteReconnect
	Index

