
Bioconductor's tspair package

Je�rey Leek

Department of Oncology

Johns Hopkins University

email: jtleek@jhu.edu

February 18, 2022

Contents

1 Overview 1

2 Simulated Example 2

3 The tspcalc function 2

4 The tspplot function 3

5 The tspsig function 3

6 Prediction with the tspair package 3

7 Cross-validating the TSP approach 4

1 Overview

The tspair package contains functions for calculating the top scoring pair for classi�cation of
high-dimensional data sets [1].
A top scoring pair is a pair of genes whose relative ranks can be used to classify arrays according
to a binary phenotype. A top scoring pair classi�er has three advantages over standard classi�ers:
(1) the classi�er is based on the relative ranks of genes and is more robust to normalization and
preprocessing, (2) the classi�er is based on a pair of genes and is likely to be more interpretable
than a more complicated classi�er, and (3) a classi�er based on a small number of genes lends itself
to diagnostic tests based on PCR that are both more rapid and cheaper than classi�ers based on a
large number of genes.
This document provides a tutorial for using the tsp package. The package consists of the functions:
tspcalc for identifying a top scoring pair based on a data matrix or expression set and a group
variable, tspplot for plotting TSP objects, tspsig for calculating signi�cance of TSPs, and
tsp.predict for predicting the outcomes of new arrays based on a previously calculated TSP.
As with any R package, detailed information on functions, their arguments and values, can be
obtained from the help �les. For instance, to view the help �le for the function tspcalc within R,
type ? tspcalc. Here we will demonstrate the use of the functions in the tspair package to ana-
lyze a simulated expression experiment. We will also show how to calculate p-values for signi�cance.

1

2 Simulated Example

We demonstrate the functionality of this package using simulated gene expression data. The data
used in this analysis is included with the tspair package as the dataset tspdata. This data set
consists of simulated data (the variable dat) for 1000 genes (in rows) and 50 arrays (in columns).
The �rst 25 arrays correspond to the �rst group and the second 25 correspond to the second. A
second variable gives the group indicator (grp) and a third variable is an expression set combining
these two elements (eSet1).
To load the data set type data(tspdata), and to view a description of this data type ? tspdata.

> library(tspair)

> data(tspdata)

> dim(dat)

[1] 1000 50

3 The tspcalc function

The tspcalc function computes all pairs in the gene expression matrix achieving the top score
described in Geman and colleagues (2004) [1], described brie�y below. In the expression matrix,
genes should be in rows and arrays in columns. Generally, the number of genes is much larger than
the number of arrays. First we calculate the top scoring pair using the simulated gene expression
matrix and the group indicator:

> tsp1 <- tspcalc(dat,grp)

> tsp1

tsp object with: 1 TSPs

Pair: TSP Score Tie-Breaker Indices

TSP 1 : 0.64 NA 5 338

The function tspcalc returns a tsp object. A tsp object consists of the following elements: index

- an index giving the rows of the gene expression matrix that de�ne a top scoring pair. If index
has more than one row, each row corresponds to a di�erent pair achieving the top score, score - the
top scoring pair score, de�ned as: |Pr(Xi > Yi|Class 1)−Pr(Xi > Yi|Class 2)| where Xi is the gene
expression measurement for the �rst gene on array i and Yi is the gene expression measurement for
the second gene of the pair on array i, grp - the group indicator variable converted to a binary (0-1)
variable, gene1 - the data for all top scoring pairs concatenated in rows, and labels the group labels
from the user-de�ned grp variable. If more than one top scoring pair achieves the same maximum
score, then the unique TSP is determined by the tie-breaking score described in [2]. Brie�y, each
expression value is ranked within its array, then a rank di�erence score is calculated for each pair
of genes.
It is also possible to calculate the top scoring pair from an expression set object, using either a
group indicator variable as with the data matrix, or by indicating a column in the pData of the
expression set.

> tsp2 <- tspcalc(eSet1,grp)

> tsp3 <- tspcalc(eSet1,1)

2

4 The tspplot function

The tspplot accepts a tsp object and returns a TSP plot. The �gure plots the expression for the
�rst gene in the TSP pair versus the expression for the second gene in the TSP pair across arrays.
The user de�ned groups are plotted in the colors red and blue. The score for the pair is shown
across the top of each plot. If there is more than one TSP, hitting return will cycle from one TSP
to the next.

> tspplot(tsp1)

Number of TSPs: 1

TSP 1

5 The tspsig function

The score from tspcalc can be interpreted as the average of sensitivity and speci�city of the classi�er
in the data used to construct the TSP. But to get a legitimate measure of signi�cance, some measure
of uncertainty must be calculated using a permutation test, cross-validation, or application of the
TSP to a new training set. Here we demonstrate how to use the functions in the tspair to calculate
signi�cance of a TSP.
The function tspsig tests the null hypothesis that no TSP exists in the data set by permutation.
To calculate the p-value, the group labels are permuted B times and a null TSP score is calculated
for each, the p-value is the total number of null TSP scores that exceed the observed TSP score
plus one divided by B + 1. The function tspsig calculates the signi�cance with a progress bar to
indicate the time left in the calculation.

> out <- tspsig(dat,grp,B=50,seed=12355)

==

> out$p

[1] 0.5882353

> out$nullscores

[1] 0.68 0.64 0.72 0.68 0.64 0.68 0.68 0.68 0.72 0.68 0.64 0.68 0.68 0.64 0.60

[16] 0.64 0.68 0.68 0.60 0.72 0.64 0.60 0.76 0.72 0.64 0.68 0.64 0.68 0.68 0.68

[31] 0.64 0.68 0.68 0.64 0.72 0.60 0.64 0.64 0.68 0.68 0.72 0.72 0.68 0.68 0.64

[46] 0.64 0.68 0.64 0.60 0.60

6 Prediction with the tspair package

A major of the advantage of the TSP approach is that predictions are very simple and can be easily
calculated either by hand or using the built in functionality of the TSP package. The function
summary can be used to tabulate the results from the TSP. Type ?summary.tsp for details.

> summary(tsp1,printall=TRUE)

3

There are 1 TSPs

Data for TSP: 1

Group Labels

1(Gene Gene5 < Gene Gene338) diseased healthy

FALSE 22 6

TRUE 3 19

In this example, the expression value for �Gene5" is greater than the expression value for �Gene338"
much more often for the diseased patients. So if new data were obtained, when the expression for
�Gene5" is greater than the expression for �Gene338" we predict that the patient will be diseased.
The predict can be used to predict group outcomes for new expression sets or data matrices. Type
?predict for details. The user can input a TSP object and a new data matrix or expression set.
The predict searches for the TSP gene names from the original tspcalc function call, and based
on the row names or featureNames of the new data set identi�es the genes to use for prediction. The
predict function returns a prediction for each new array. If the tsp object includes more than one
TSP, the default is to predict from the TSP achieving the highest tie-breaking score from Tan and
colleagues [2], but the user may elect to predict from any TSP. Here the variables dat2 and eSet2

represent independent data sets that can be used to predict outcomes based on the TSP classi�er
de�ned above.

> predict(tsp1,eSet2)

[1] "diseased" "healthy" "healthy" "diseased" "healthy" "diseased"

[7] "healthy" "diseased" "diseased" "diseased" "healthy" "diseased"

[13] "diseased" "healthy" "healthy" "diseased" "diseased" "diseased"

[19] "healthy" "healthy"

> predict(tsp1,dat2)

[1] "diseased" "healthy" "healthy" "diseased" "healthy" "diseased"

[7] "healthy" "diseased" "diseased" "diseased" "healthy" "diseased"

[13] "diseased" "healthy" "healthy" "diseased" "diseased" "diseased"

[19] "healthy" "healthy"

7 Cross-validating the TSP approach

The cross-validation procedure described by Geman and colleagues [1] re-calculates the TSP classi-
�er within each cross-validation loop. This scheme can be intuitively though of as cross-validating
the TSP procedure, instead of the speci�c TSP classi�er. To calculate the leave one out cross-
validation error, each sample is left out, the TSP classi�er is calculated, and the group of the left
out sample is predicted. The estimated cross-validation error is the faction of incorrect predictions.

> narrays <- ncol(dat)

> correct.prediction <- rep(TRUE,narrays)

> for(i in 1:narrays){

+ testdat <- dat[, -i]

+ testgrp <- grp[-i]

+ tsptest <- tspcalc(testdat,testgrp)

4

+ prediction <- predict(tsptest,dat)[i]

+ correct.prediction[i] <- prediction == grp[i]

+ }

> cv.error <- mean(correct.prediction==FALSE)

> cv.error

[1] 0.44

References

[1] D. Geman, C. A'vignon, D. Naiman, and R. Winslow. Classifying gene expression pro�les from
pairwise mrna comparisons. Statist. Appl. in Genetics and Molecular Biology, 2004.

[2] A.C. Tan, D.Q. Naiman, L. Xu, R.L. Winslow, and D. Geman. Simple decision rules for classi-
fying human cancers from gene expression pro�les. Bioinformatics, 21:3896�3904, 2005.

5

−2 −1 0 1 2 3

−
2

−
1

0
1

2

Groups: healthy = Red | disease = Blue; Score: 0.64

Gene: Gene5 Expression

G
en

e:
 G

en
e3

38
 E

xp
re

ss
io

n

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

Figure 1: A top scoring pair plot from the simulated example.

6

