

Package ‘harbChIP’

April 6, 2022

Title Experimental Data Package: harbChIP

Description data from a yeast ChIP-chip experiment

Version 1.32.0

Author VJ Carey

Maintainer VJ Carey <stvjc@channing.harvard.edu>

Depends R (>= 2.10.0), tools, utils, IRanges, Biobase (>= 2.5.5),
Biostrings

Imports methods, stats

License Artistic-2.0

biocViews ExperimentData, Saccharomyces_cerevisiae_Data,
SequencingData

git_url <https://git.bioconductor.org/packages/harbChIP>

git_branch RELEASE_3_14

git_last_commit b71e1d6

git_last_commit_date 2021-10-26

Date/Publication 2022-04-06

R topics documented:

allhex	2
buildUpstreamSeqs2	2
chkMotif4TF	3
harbChIP	4
sceUpstr	5
upstreamSeqs-class	6

Index

7

allhex*utility function: get all hexamers in upstream sequence for an ORF*

Description

utility function: get all hexamers in upstream sequence for an ORF

Usage

```
allhex(orf, usobj)
```

Arguments

orf	character string, ORF name
usobj	upstreamSeqs object

Details

computes Biostrings Views

Value

computes Biostrings Views

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```
data(sceUpstr)
allhex("YAL001C", sceUpstr)
```

buildUpstreamSeqs2*workflow component – build an upstreamSeqs instance from a FASTA read*

Description

workflow component – build an upstreamSeqs instance from a FASTA read

Usage

```
buildUpstreamSeqs2(fastaRead, organism="sce", provenance="harmen")
```

Arguments

fastaRead	results of a readFASTA from Biostrings
organism	string naming organism
provenance	string or structure describing provenance

Details

generates an instance of upstreamSeqs

Value

generates an instance of upstreamSeqs

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```
# x = readFASTA(...)
# y = buildUpstreamSeqs2(x)
```

chkMotif4TF

analyze relationship between motif frequency and binding intensity for selected motif and TF

Description

analyze relationship between motif frequency and binding intensity for selected motif and TF

Usage

```
chkMotif4TF(motif, TF, chset, upstr, bthresh=2, countthresh=0)
```

Arguments

motif	character string in alphabet known to Biostrings
TF	name of a TF (sample name in the ChIP-chip data structure chset)
chset	an ExpressionSet instance harboring ChIP-chip data
upstr	an instance of upstreamSeqs
bthresh	threshold for binding intensity results to declare TF 'bound' to the upstream region
countthresh	threshold for motif count to be considered 'present' in upstream region

Details

Uses `countPattern` to perform motif count.

Value

a list with elements `call`, `table`, and `test`, the latter providing the result of `fisher.test`

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```
# slow
## Not run:
data(harbChIP)
data(sceUpstr)
chkMotif4TF("CGGCCG", "RDS1", harbChIP, sceUpstr)

## End(Not run)
```

Description

binding ratios and intergenic region data from a ChIP-chip experiment in yeast

Usage

```
data(harbChIP)
```

Format

The format is: An `ExpressionSetObject` with covariates:

- `txFac`: transcription factor symbol from Harbison website CSV file columnnames

Note

derived from web site jura.wi.mit.edu/young_public/regulatory_code/GWLD.html, binding ratios

Examples

```
data(harbChIP)
harbChIP
experimentData(harbChIP)
exprs(harbChIP)[1:6,1:7]
dim(exprs(harbChIP))
pData(featureData(harbChIP))[1:6,]
```

sceUpstr

*Biostrings representations of *S. cerevisiae* upstream regions*

Description

Biostrings representations of *S. cerevisiae* upstream regions

Usage

```
data(sceUpstr)
```

Details

environment-based S4 object with DNAString elements

Value

environment-based S4 object with DNAString elements

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```
data(sceUpstr)
sceUpstr
getUpstream("YAL001C", sceUpstr)
```

upstreamSeqs-class *Class "upstreamSeqs"*

Description

Container for a collection of upstream sequences

Objects from the Class

Objects can be created by calls of the form `new("upstreamSeqs", ...)`. Environments are used to store collections of DNAStrings.

Slots

seqs: Object of class "environment" ~~
chrom: Object of class "environment" ~~
revComp: Object of class "environment" ~~
type: Object of class "environment" ~~
organism: Object of class "character" ~~
provenance: Object of class "ANY" ~~

Methods

Nmers `signature(n = "numeric", orf = "character", usobj = "upstreamSeqs")`: obtain all subsequences of length n as view elements of a DNA string
keys `signature(x = "upstreamSeqs")`: ...
organism `signature(x = "upstreamSeqs")`: ...
seqs `signature(x = "upstreamSeqs")`: ...
show `signature(object = "upstreamSeqs")`: ...

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```
showClass("upstreamSeqs")
data(sceUpstr)
sceUpstr
keys(sceUpstr)[1:5]
```

Index

- * **classes**
 - upstreamSeqs-class, 6
- * **datasets**
 - harbChIP, 4
- * **models**
 - allhex, 2
 - buildUpstreamSeqs2, 2
 - chkMotif4TF, 3
 - sceUpstr, 5
- allhex, 2
- buildUpstreamSeqs2, 2
- chkAllUS (chkMotif4TF), 3
- chkMotif4TF, 3
- countPattern, 4
- fisher.test, 4
- getUpstream (upstreamSeqs-class), 6
- harbChIP, 4
- keys (upstreamSeqs-class), 6
- keys, upstreamSeqs-method
 - (upstreamSeqs-class), 6
- Nmers (upstreamSeqs-class), 6
- Nmers, numeric, character, upstreamSeqs-method
 - (upstreamSeqs-class), 6
- organism (upstreamSeqs-class), 6
- organism, upstreamSeqs-method
 - (upstreamSeqs-class), 6
- sceUpstr, 5
- seqs (upstreamSeqs-class), 6
- seqs, upstreamSeqs-method
 - (upstreamSeqs-class), 6
- show, upstreamSeqs-method
 - (upstreamSeqs-class), 6
- upstreamSeqs-class, 6