Package 'structToolbox'

October 12, 2021

Type Package

Title Data processing & analysis tools for Metabolomics and other omics

Version 1.4.3

Description An extensive set of data (pre-)processing and analysis methods and tools for metabolomics and other omics, with a strong emphasis on statistics and machine learning. This toolbox allows the user to build extensive and standardised workflows for data analysis. The methods and tools have been implemented using class-based templates provided by the struct (Statistics in R Using Class-based Templates) package. The toolbox includes pre-processing methods (e.g. signal drift and batch correction, normalisation, missing value imputation and scaling), univariate (e.g. ttest, various forms of ANOVA, Kruskal–Wallis test and more) and multivariate statistical methods (e.g. PCA and PLS, including cross-validation and permutation testing) as well as machine learning methods (e.g. Support Vector Machines). The STATistics Ontology (STATO) has been integrated and implemented to provide standardised definitions for the different methods, inputs and outputs.

License GPL-3
Encoding UTF-8
LazyData true

Collate 'AUC_metric_class.R' 'entity_objects.R' 'DFA_class.R' 'anova_class.R' 'HSD_class.R' 'mixed_effect_class.R' 'HSDEM_class.R' 'MTBLS79_dataset_class.R' 'PCA_class.R' 'PCA_plotfcns.R' 'PLSDA_class.R' 'PLSDA_charts.R' 'PLSR_class.R' 'as_data_frame_doc.R' 'autoscale_class.R' 'balanced_accuracy_class.R' 'blank_filter_class.R' 'bootstrap_class.R' 'calculate_doc.R' 'chart_plot_doc.R' 'classical_lsq_class.R' 'confounders_clsq_class.R' 'constant_sum_norm_class.R' 'corr_coef_class.R' 'd_ratio_filter_class.R' 'dataset_chart_classes.R' 'factor_barchart_class.R' 'feature_plot_array_class.R' 'feature_profile_class.R' 'filter_by_name_class.R' 'filter_na_count.R' 'filter_smeta_class.R' 'fisher_exact_class.R' 'fold_change_class.R'

'fold_change_int_class.R' 'forward_selection_by_rank_class.R'	
'ggplot_theme_pub.R' 'glog_class.R' 'grid_search_1d_class.R'	
'hca_class.R' 'kfold_xval_class.R' 'kfold_xval_charts.R'	
'knn_impute_class.R' 'kw_rank_sum_class.R' 'linear_model_class.R' 'log_transform.R' 'mean_centre_class.R'	
'mean_of_medians.R' 'model_apply_doc.R' 'model_predict_doc.R'	
'model_reverse_doc.R' 'model_train_doc.R'	
'mv_feature_filter_class.R' 'mv_sample_filter_class.R'	
'nroot_transform_class.R' 'pairs_filter_class.R'	
'paretoscale_class.R' 'permutation_test_class.R'	
'permute_sample_order_class.R' 'plsda_vip_summary_chart.R' 'pqn_norm_method_class.R' 'prop_na_class.R' 'r_squared_class.R'	
'rsd_filter.R' 'run_doc.R' 'sb_corr.R' 'split_data_class.R'	
'stratified_split_class.R' 'structToolbox.R'	
'svm_classifier_class.R' 'tSNE_class.R' 'tic_chart_class.R'	
'ttest_class.R' 'vec_norm_class.R' 'wilcox_test_class.R' 'zzz.R'	
Depends R (>= 4.0), struct (>= 1.2.0)	
Imports ggplot2, ggthemes, grid, gridExtra, methods, scales, sp,	
stats, utils	
RoxygenNote 7.1.2	
Suggests agricolae, BiocFileCache, BiocStyle, car, covr, cowplot,	
e1071, emmeans, ggdendro, knitr, magick, nlme, openxlsx, pls,	
pmp, reshape2, ropls, rmarkdown, Rtsne, testthat	
VignetteBuilder knitr	
biocViews WorkflowStep, Metabolomics	
git_url https://git.bioconductor.org/packages/structToolbox	
git_branch RELEASE_3_13	
git_last_commit 1af2d87	
git_last_commit_date 2021-09-17	
Date/Publication 2021-10-12	
Author Gavin Rhys Lloyd [aut, cre], Ralf Johannes Maria Weber [aut]	
Maintainer Gavin Rhys Lloyd <g.r.lloyd@bham.ac.uk></g.r.lloyd@bham.ac.uk>	
R topics documented:	
ANOVA	5
	6
	7
autoscale	7
balanced_accuracy	8
-	9
omik_mei_mot	J

bootstrap	. 11
calculate, AUC-method	
chart_plot,dfa_scores_plot,DFA-method	
classical_lsq	
compare_dist	
confounders_clsq	
confounders_lsq_barchart	
confounders_lsq_boxplot	
constant_sum_norm	
corr_coef	
DatasetExperiment_boxplot	
DatasetExperiment_dist	
DatasetExperiment_factor_boxplot	
DatasetExperiment_heatmap	
DFA	
dfa_scores_plot	
dratio_filter	
feature_boxplot	
feature_profile	
feature_profile_array	
filter_by_name	
filter_na_count	
filter_smeta	
fisher_exact	
fold_change	
fold_change_int	
fold_change_plot	
forward_selection_by_rank	
fs_line	
glog_opt_plot	
· ·	
grid_search_1d	
HCA	
hca_dendrogram	
HSD	
HSDEM	. 48
kfoldxcv_grid	
kfoldxcv_metric	
kfold_xval	
knn_impute	
kw_p_hist	
kw_rank_sum	
linear_model	
log_transform	
mean_centre	
mean_of_medians	
mived affect	56

model_apply,ANOVA,DatasetExperiment-method	58
model_predict,DFA,DatasetExperiment-method	60
model_reverse,autoscale,DatasetExperiment-method	62
model_train,DFA,DatasetExperiment-method	62
MTBLS79_DatasetExperiment	64
mv_boxplot	65
mv_feature_filter	66
mv_feature_filter_hist	67
mv_histogram	68
mv_sample_filter	69
mv_sample_filter_hist	70
nroot_transform	70
pairs_filter	71
pareto_scale	71
PCA	72
pca_biplot	72
pca_correlation_plot	74
pca_dstat_plot	74
pca_loadings_plot	75
pca_scores_plot	76
pca_scree_plot	77
permutation_test	78
permutation_test_plot	78
permute_sample_order	79
PLSDA	80
plsda_predicted_plot	81
plsda_regcoeff_plot	82
plsda_roc_plot	82
plsda_scores_plot	83
plsda_vip_plot	85
plsda_vip_summary_plot	86
PLSR	87
plsr_cook_dist	88
plsr_prediction_plot	88
plsr_qq_plot	89
plsr_residual_hist	89
pqn_norm	90
pqn_norm_hist	91
prop_na	92
rsd_filter	93
rsd_filter_hist	94
run,bootstrap,DatasetExperiment,metric-method	94
r_squared	95
sb corr	96
 split_data	97
stratified_split	98
structToolbox	98
SVM	99

ANOVA 5

ANOVA			A_i	na	lys	sis	oj	f V	⁄ar	ia	nc	e																					
Index																																	108
	wilcox_test .	•	 •		•	•	•	•	•		•	•	•	•	•	•	•	 •	•	•	•	•	•		•	•	•	•	•	•	•	•	106
	wilcox_p_hist																																
	vec_norm																																
	ttest																																
	tSNE_scatter																																
	$tSNE\ldots\ldots$																																102
	tic_chart																																101
	svm_plot_2d																																100

Description

Analysis of Variance (ANOVA) is a univariate method used to analyse the difference among group means. Multiple test corrected p-values are computed to indicate significance for each feature.

Usage

```
ANOVA(alpha = 0.05, mtc = "fdr", formula, ss_type = "III", ...)
```

Arguments

(numeric) The p-value cutoff for determining significance. The default is 0.05. alpha (character) Multiple test correction method. Allowed values are limited to the mtc following: • "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons. • "fdr": Benjamini and Hochberg False Discovery Rate correction. • "none": No correction. The default is "fdr". formula (formula) A symbolic description of the model to be fitted. (character) ANOVA sum of squares. Allowed values are limited to the followss_type ing: • "I": Type I sum of squares. • "II": Type II sum of squares. • "III": Type III sum of squares. The default is "III". Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

• car

6 as_data_frame

Value

A ANOVA object.

References

Fox J, Weisberg S (2019). *An R Companion to Applied Regression*, Third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.

Examples

```
D = iris_DatasetExperiment()
M = ANOVA(formula=y~Species)
M = model_apply(M,D)
```

as_data_frame

Convert to data.frame

Description

Convert the outputs of the input model into a data.frame.

Usage

```
## S4 method for signature 'filter_na_count'
as_data_frame(M)

## S4 method for signature 'ttest'
as_data_frame(M)

## S4 method for signature 'wilcox_test'
as_data_frame(M)
```

Arguments

М

a model object

Value

A data.frame of model outputs

```
D = iris_DatasetExperiment()
M = filter_na_count(threshold=50, factor_name='Species')
M= model_apply(M,D)
df = as_data_frame(M)
```

AUC 7

AUC

Area under ROC curve

Description

The area under the ROC curve of a classifier is estimated using the trapezoid method.

Usage

```
AUC(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A AUC object.

Examples

autoscale

Autoscaling

Description

Each variable/feature is mean centred and scaled by the standard deviation. The transformed variables have zero-mean and unit-variance.

Usage

```
autoscale(mode = "data", ...)
```

Arguments

mode

(character) Mode of action. Allowed values are limited to the following:

- "data": Autoscaling is applied to the data matrix only.
- "sample_meta": Autoscaling is applied to the sample_meta data only.
- "both": Autoscaling is applied to both the data matrix and the meta data.

The default is "data".

.. Additional slots and values passed to struct_class.

8 balanced_accuracy

Value

A autoscale object.

Examples

```
D = iris_DatasetExperiment()
M = autoscale()
M = model_train(M,D)
M = model_predict(M,D)
```

balanced_accuracy

Balanced Accuracy

Description

Balanced Accuracy is the average proportion of correctly classified samples across all groups.

Usage

```
balanced_accuracy(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A balanced_accuracy object.

blank_filter 9

blank_filter

Blank filter

Description

A blank filter filters features by comparing the median intensity of blank samples to the median intensity of samples. Features where the relative intensity (fold change) is not large when compared to the blank are removed. The number of times a feature is detected across all blank samples may also be considered. If the feature is not detected in a high enough proportion of the blanks then it is not removed.

Usage

```
blank_filter(
  fold_change = 20,
  blank_label = "blank",
  qc_label = "QC",
  factor_name,
  fraction_in_blank = 0,
  ...
)
```

Arguments

fold_change (numeric) Features with fold change less than this value are removed. The default is 20.

blank_label (character) The label used to identify blank samples. The default is "blank".

qc_label (character, NULL) The label used to identify QC samples. If set to NULL then the median of the samples is used. The default is "QC".

factor_name (character) The name of a sample-meta column to use.

fraction_in_blank (numeric) Features present in less than this proportion of the blanks are not considered for removal. The default is 0.

Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

```
    pmp
```

Value

```
A blank_filter object.
```

10 blank_filter_hist

References

Jankevics A, Lloyd GR, Weber RJM (????). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. R package version 1.3.5.

Examples

blank_filter_hist

Histogram of blank filter fold changes

Description

A histogram of the calculated fold changes for the blank filter (median samples divided by median blanks)

Usage

```
blank_filter_hist(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

```
A blank_filter_hist object.
```

```
C = blank_filter_hist()
```

bootstrap 11

bootstrap

Bootstrap resampling

Description

In bootstrap resampling a subset of samples is selected at random with replacement to form a training set. Any sample not selected for training is included in the test set. This process is repeated many times, and performance metrics are computed for each repetition.

Usage

```
bootstrap(number_of_repetitions = 100, collect, ...)
```

Arguments

```
number_of_repetitions
(numeric, integer) The number of bootstrap repetitions. The default is 100.

collect (character) The name of a model output to collect over all bootstrap repetitions, in addition to the input metric.

... Additional slots and values passed to struct_class.
```

Value

A bootstrap object.

```
calculate, AUC-method Calculate metric
```

Description

Calculate metric

```
## S4 method for signature 'AUC'
calculate(obj, Y, Yhat)

## S4 method for signature 'balanced_accuracy'
calculate(obj, Y, Yhat)

## S4 method for signature 'r_squared'
calculate(obj, Y, Yhat)
```

Arguments

obj a metric object

Y the true values/group labels
Yhat the predicted values/group labels

Value

a modified metric object

Examples

```
MET = metric()
calculate(MET)
```

```
chart\_plot, dfa\_scores\_plot, DFA-method \\ chart\_plot \ method
```

Description

Plots a chart object

```
## S4 method for signature 'dfa_scores_plot,DFA'
chart_plot(obj, dobj)

## S4 method for signature 'pca_correlation_plot,PCA'
chart_plot(obj, dobj)

## S4 method for signature 'pca_scores_plot,PCA'
chart_plot(obj, dobj)

## S4 method for signature 'pca_biplot,PCA'
chart_plot(obj, dobj)

## S4 method for signature 'pca_loadings_plot,PCA'
chart_plot(obj, dobj)

## S4 method for signature 'pca_scree_plot,PCA'
chart_plot(obj, dobj)

## S4 method for signature 'pca_dstat_plot,PCA'
chart_plot(obj, dobj)

## S4 method for signature 'pca_dstat_plot,PCA'
chart_plot(obj, dobj)

## S4 method for signature 'plsda_scores_plot,PLSDA'
```

```
chart_plot(obj, dobj)
## S4 method for signature 'plsda_predicted_plot,PLSDA'
chart_plot(obj, dobj)
## S4 method for signature 'plsda_roc_plot,PLSDA'
chart_plot(obj, dobj)
## S4 method for signature 'plsda_vip_plot,PLSDA'
chart_plot(obj, dobj)
## S4 method for signature 'plsda_regcoeff_plot,PLSDA'
chart_plot(obj, dobj)
## S4 method for signature 'plsr_prediction_plot,PLSR'
chart_plot(obj, dobj)
## S4 method for signature 'plsr_residual_hist,PLSR'
chart_plot(obj, dobj)
## S4 method for signature 'plsr_qq_plot,PLSR'
chart_plot(obj, dobj)
## S4 method for signature 'plsr_cook_dist,PLSR'
chart_plot(obj, dobj)
## S4 method for signature 'blank_filter_hist,blank_filter'
chart_plot(obj, dobj)
## S4 method for signature 'confounders_lsq_barchart,confounders_clsq'
chart_plot(obj, dobj)
## S4 method for signature 'confounders_lsq_boxplot,confounders_clsq'
chart_plot(obj, dobj)
## S4 method for signature 'feature_boxplot,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'mv_histogram, DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'mv_boxplot,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'DatasetExperiment_dist,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'DatasetExperiment_boxplot,DatasetExperiment'
```

```
chart_plot(obj, dobj)
## S4 method for signature 'compare_dist,DatasetExperiment'
chart_plot(obj, dobj, eobj)
## S4 method for signature 'DatasetExperiment_heatmap,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'DatasetExperiment_factor_boxplot,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'feature_profile_array,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'feature_profile,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'fold_change_plot,fold_change'
chart_plot(obj, dobj)
## S4 method for signature 'fs_line,forward_selection_by_rank'
chart_plot(obj, dobj)
## S4 method for signature 'glog_opt_plot,glog_transform'
chart_plot(obj, dobj, gobj)
## S4 method for signature 'gs_line,grid_search_1d'
chart_plot(obj, dobj)
## S4 method for signature 'hca_dendrogram, HCA'
chart_plot(obj, dobj)
## S4 method for signature 'kfoldxcv_grid,kfold_xval'
chart_plot(obj, dobj)
## S4 method for signature 'kfoldxcv_metric,kfold_xval'
chart_plot(obj, dobj)
## S4 method for signature 'kw_p_hist,kw_rank_sum'
chart_plot(obj, dobj)
## S4 method for signature 'mv_feature_filter_hist,mv_feature_filter'
chart_plot(obj, dobj)
## S4 method for signature 'mv_sample_filter_hist,mv_sample_filter'
chart_plot(obj, dobj)
## S4 method for signature 'permutation_test_plot,permutation_test'
```

```
chart_plot(obj, dobj)
## S4 method for signature 'plsda_vip_summary_plot,PLSDA'
chart_plot(obj, dobj)
## S4 method for signature 'pqn_norm_hist,pqn_norm'
chart_plot(obj, dobj)
## S4 method for signature 'rsd_filter_hist,rsd_filter'
chart_plot(obj, dobj)
## S4 method for signature 'feature_profile,sb_corr'
chart_plot(obj, dobj, gobj)
## S4 method for signature 'svm_plot_2d,SVM'
chart_plot(obj, dobj, gobj)
## S4 method for signature 'tSNE_scatter,tSNE'
chart_plot(obj, dobj)
## S4 method for signature 'tic_chart,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'wilcox_p_hist,wilcox_test'
chart_plot(obj, dobj)
```

Arguments

obj	a chart object
dobj	a struct object
eobj	a second DatasetExperiment object to compare with the first
gobj	The DatasetExperiment object before signal correction was applied.

Value

a plot object

```
C = example_chart()
chart_plot(C,iris_DatasetExperiment())
```

16 classical_lsq

classical_lsq

Univariate Classical Least Squares Regression

Description

In univariate classical least squares regression a line is fitted between each feature/variable and a response variable. The fitted line minimises the sum of squared differences between the true response and the predicted response. The coefficients (offset, gradient) of the fit can be tested for significance.

Usage

```
classical_lsq(alpha = 0.05, mtc = "fdr", factor_names, intercept = TRUE, ...)
```

Arguments

alpha

(numeric) The p-value cutoff for determining significance. The default is 0.05.

mtc

(character) Multiple test correction method. Allowed values are limited to the following:

- "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
- "fdr": Benjamini and Hochberg False Discovery Rate correction.
- "none": No correction.

The default is "fdr".

factor_names

(character) The name of sample meta column(s) to use.

intercept

(logical) Model intercept. Allowed values are limited to the following:

- "TRUE": An intercept term is included in the model.
- "FALSE": An intercept term is not included in the model.

The default is TRUE.

... Additional slots and values passed to struct_class.

Value

A classical_lsq object.

```
D = iris_DatasetExperiment()
M = classical_lsq(factor_names = 'Species')
M = model_apply(M,D)
```

compare_dist 17

compare_dist

Compare distributions

Description

Histograms and boxplots computed across samples and features are used to visually compare two datasets e.g. before and after filtering and/or normalisation.

Usage

```
compare_dist(factor_name, ...)
```

Arguments

```
factor_name (character) The name of a sample-meta column to use.
... Additional slots and values passed to struct_class.
```

Value

A compare_dist object.

Examples

```
D1=MTBLS79_DatasetExperiment(filtered=FALSE)
D2=MTBLS79_DatasetExperiment(filtered=TRUE)
C = compare_dist(factor_name='Class')
chart_plot(C,D1,D2)
```

confounders_clsq

Check for confounding factors

Description

Univariate least squares regression models are used to compare models with and without potential confounding factors included. The change in coefficients (delta) is then computed for each potential confounding factor. Factors with a large delta are said to be having a large impact on the model and are therefore confounding. p-values are computed for models with confounders included to reduce potential false positives. Only suitable for main factors with 2 levels.

18 confounders_clsq

Usage

```
confounders_clsq(
  alpha = 0.05,
  mtc = "fdr",
  factor_name,
  confounding_factors,
  threshold = 0.15,
  ...
)
```

Arguments

alpha

(numeric) The p-value cutoff for determining significance. The default is 0.05.

mtc

(character) Multiple test correction method. Allowed values are limited to the following:

- "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
- "fdr": Benjamini and Hochberg False Discovery Rate correction.
- "none": No correction.

The default is "fdr".

factor_name

(character) The name of the main factor with which other factors may be confounding.

confounding_factors

(character) The name(s) of factor(s) that are potential confounding factors.

threshold

(numeric) Factors with a delta greater than the threshold are considered to

be confounding. The default is 0.15.

... Additional slots and values passed to struct_class.

Value

A confounders_clsq object.

```
confounders_lsq_barchart
```

Confounding factor relative change barchart

Description

A barchart of the relative change (delta) in regression coefficient when potential confounding factors are included, and excluded, from the model. Factors with a large delta are considered to be confounding factors.

Usage

```
confounders_lsq_barchart(feature_to_plot, threshold = 10, ...)
```

Arguments

Value

A confounders_lsq_barchart object.

20 constant_sum_norm

```
confounders_lsq_boxplot
```

Confounding factor relative change boxplot

Description

A boxplot of the relative change (delta) in regression coefficient when potential confounding factors are included, and excluded, from the model. Factors with a large delta are considered to be confounding factors.

Usage

```
confounders_lsq_boxplot(threshold = 10, ...)
```

Arguments

```
threshold (numeric) A horizontal line is plotted to indicate the threshold. The default is 10.

... Additional slots and values passed to struct_class.
```

Value

A confounders_lsq_boxplot object.

Examples

constant_sum_norm

Normalisation to constant sum

Description

Each sample is normalised such that the total signal is equal to one (or a scaling factor if specified).

```
constant_sum_norm(scaling_factor = 1, ...)
```

corr_coef 21

Arguments

```
scaling_factor (numeric) The scaling factor applied after normalisation. The default is 1.

... Additional slots and values passed to struct_class.
```

Value

A constant_sum_norm object.

Examples

```
M = constant_sum_norm()
```

corr_coef

Correlation coefficient

Description

The correlation between features and a set of continuous factor are calculated. Multiple-test corrected p-values are used to indicate whether the computed coefficients may have occurred by chance.

Usage

```
corr_coef(alpha = 0.05, mtc = "fdr", factor_names, method = "spearman", ...)
```

Arguments

alpha mtc (numeric) The p-value cutoff for determining significance. The default is 0.05. (character) Multiple test correction method. Allowed values are limited to the following:

- "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
- "fdr": Benjamini and Hochberg False Discovery Rate correction.
- "none": No correction.

The default is "fdr".

factor_names

(character) The name of sample meta column(s) to use.

method

(character) Type of correlation. Allowed values are limited to the following:

- "kendall": Kendall's tau is computed.
- "pearson": Pearson product moment correlation is computed.
- "spearman": Spearman's rho statistic is computed.

The default is "spearman".

.. Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

• stats

Value

A corr_coef object.

References

R Core Team (2021). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Examples

```
D = MTBLS79_DatasetExperiment(filtered=TRUE)

# subset for this example
D = D[,1:10]

# convert to numeric for this example
D$sample_meta$sample_order=as.numeric(D$sample_meta$run_order)
D$sample_meta$sample_rep=as.numeric(D$sample_meta$Sample_Rep)

M = corr_coef(factor_names=c('sample_order','sample_rep'))
M = model_apply(M,D)
```

DatasetExperiment_boxplot

Feature distribution histogram

Description

A boxplot to visualise the distribution of values within a subset of features.

```
DatasetExperiment_boxplot(
  factor_name,
  by_sample = TRUE,
  per_class = TRUE,
  number = 50,
  ...
)
```

Arguments

factor_name (character) The name of a sample-meta column to use.

by_sample (logical) Plot by sample. Allowed values are limited to the following:

• "TRUE": The data is plotted across features for a subset of samples.

• "FALSE": The data is plotted across samples for a subset of features.

The default is TRUE.

per_class (logical) Plot per class. Allowed values are limited to the following:

• "TRUE": The data is plotted for each class.

• "FALSE": The data is plotted for all samples.

The default is TRUE.

number (numeric, integer) The number of features/samples plotted. The default is 50.

Additional slots and values passed to struct_class.

Value

```
A DatasetExperiment_boxplot object. struct object
```

Examples

```
D = MTBLS79_DatasetExperiment()
C = DatasetExperiment_boxplot(factor_name='Class',number=10,per_class=FALSE)
chart_plot(C,D)
```

DatasetExperiment_dist

Feature distribution histogram

Description

A histogram to visualise the distribution of values within features.

Usage

```
DatasetExperiment_dist(factor_name, per_class = TRUE, ...)
```

Arguments

```
factor_name (character) The name of a sample-meta column to use.

per_class (logical) Plot per class. Allowed values are limited to the following:

• "TRUE": The distributions are plotted for each class.

• "FALSE": The distribution is plotted for all samples.

The default is TRUE.

Additional slots and values passed to struct_class.
```

Value

A DatasetExperiment_dist object.

Examples

```
D = MTBLS79_DatasetExperiment()
C = DatasetExperiment_dist(factor_name='Class')
chart_plot(C,D)
```

```
{\tt DatasetExperiment\_factor\_boxplot} \\ Factor\ boxplot
```

Description

Boxplot for a feature to visualise the distribution of values within each group

Usage

```
DatasetExperiment_factor_boxplot(feature_to_plot, factor_names, ...)
```

Arguments

Value

A DatasetExperiment_factor_boxplot object.

```
D = iris_DatasetExperiment()
C = DatasetExperiment_factor_boxplot(factor_names='Species',feature_to_plot='Petal.Width')
chart_plot(C,D)
```

DatasetExperiment_heatmap

DatasetExperiment heatmap

Description

A heatmap to visualise the measured values in a data matrix.

Usage

```
DatasetExperiment_heatmap(na_colour = "#FF00E4", ...)
```

Arguments

```
na_colour (character) The hex colour code used to plot missing values. The default is "#FF00E4".

Additional slots and values passed to struct_class.
```

Details

This object makes use of functionality from the following packages:

• reshape2

Value

A DatasetExperiment_heatmap object.

References

```
Wickham H (2007). "Reshaping Data with the reshape Package." Journal of Statistical Software, 21(12), 1–20. http://www.jstatsoft.org/v21/i12/.
```

```
D = iris_DatasetExperiment()
C = DatasetExperiment_heatmap()
chart_plot(C,D)
```

26 dfa_scores_plot

DFA

Discriminant Factor Analysis

Description

Discriminant Factor Analysis (DFA) is a supervised classification method. Using a linear combination of the input variables, DFA finds new orthogonal axes (canonical values) to minimize the variance within each given class and maximize variance between classes.

Usage

```
DFA(factor_name, number_components = 2, ...)
```

Arguments

```
factor_name (character) The name of a sample-meta column to use.

number_components

(numeric, integer) The number of DFA components calculated. The default is 2.

Additional slots and values passed to struct_class.
```

Value

A DFA object.

References

Manly B (1986). Multivariate Statistical Methods: A Primer. Chapman and Hall, Boca Raton.

Examples

```
D = iris_DatasetExperiment()
M = DFA(factor_name='Species')
M = model_apply(M,D)
```

dfa_scores_plot

DFA scores plot

Description

A scatter plot of the selected DFA components.

dfa_scores_plot 27

Usage

```
dfa_scores_plot(
  components = c(1, 2),
  points_to_label = "none",
  factor_name,
  ellipse = "all",
  label_filter = character(0),
  label_factor = "rownames",
  label_size = 3.88,
  ...
)
```

Arguments

components (numeric) The components selected for plotting. The default is c(1,2). points_to_label

(character) Points to label. Allowed values are limited to the following:

- "none": No samples labels are displayed.
- "all": The labels for all samples are displayed.
- "outliers": Labels for for potential outlier samples are displayed.

The default is "none".

factor_name

(character) The name of a sample-meta column to use.

ellipse

(character) Plot ellipses. Allowed values are limited to the following:

- "all": Hotelling T2 95% ellipses are plotted for all groups and all samples.
- "group": Hotelling T2 95% ellipses are plotted for all groups.
- "none": Ellipses are not included on the plot.
- "sample": A Hotelling T2 95% ellipse is plotted for all samples (ignoring group).

The default is "all".

label_filter

(character) Labels are only plotted for the named groups. If zero-length then all groups are included. The default is character(0).

label_factor

(character) The column name of sample_meta to use for labelling samples on the plot. "rownames" will use the row names from sample_meta. The default is "rownames".

label_size

(numeric) The text size of labels. Note this is not in Font Units. The default is

5.0

Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

- scales
- ggplot2

28 dratio_filter

Value

```
A dfa_scores_plot object.
```

References

Wickham H, Seidel D (2020). *scales: Scale Functions for Visualization*. R package version 1.1.1, https://CRAN.R-project.org/package=scales.

Wickham H (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

Examples

```
D = iris_DatasetExperiment()
M = mean_centre() + DFA(factor_name='Species')
M = model_apply(M,D)
C = dfa_scores_plot(factor_name = 'Species')
chart_plot(C,M[2])
```

dratio_filter

Dispersion ratio filter

Description

The dispersion ratio (d-ratio) compares the standard deviation (or non-parametric equivalent) of the Quality Control (QC) samples relative to the standard deviation (or non-parametric equivalent) of the samples for each feature. If the d-ratio is greater than a predefined threshold then the observed sample variance could be due to technical variance and the feature is removed.

Usage

```
dratio_filter(threshold = 20, qc_label = "QC", factor_name, ...)
```

Arguments

```
threshold (numeric) The threshold below which features are removed. The default is 20.

qc_label (character) The label used to identify QC samples. The default is "QC".

factor_name (character) The name of a sample-meta column to use.

Additional slots and values passed to struct_class.
```

Value

A dratio_filter object.

feature_boxplot 29

References

Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, Dunn WB (2018). "Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies." *Metabolomics*, **14**(6).

Examples

```
D = MTBLS79_DatasetExperiment()
M = dratio_filter(threshold=20,qc_label='QC',factor_name='Class')
M = model_apply(M,D)
```

feature_boxplot

Feature boxplot

Description

A boxplot to visualise the distribution of values within a feature.

Usage

```
feature_boxplot(
  label_outliers = TRUE,
  feature_to_plot,
  factor_name,
  show_counts = TRUE,
  style = "boxplot",
  jitter = FALSE,
  fill = FALSE,
  ...
)
```

Arguments

label_outliers (logical) Label outliers. Allowed values are limited to the following:

- "TRUE": The index for outlier samples is included on the plot.
- "FALSE": No labels are displayed.

The default is TRUE.

feature_to_plot

(character, numeric, integer) The column name of the plotted feature.

factor_name

(character) The name of a sample-meta column to use.

show_counts

(logical) Show counts. Allowed values are limited to the following:

- "TRUE": The number of samples for each box is displayed.
- "FALSE": The number of samples for each box is not displayed.

The default is TRUE.

style

(character) Plot style. Allowed values are limited to the following:

30 feature_profile

```
"boxplot": Boxplot style.
"violin": Violon plot style.
The default is "boxplot".
jitter (logical) Include points plotted with added jitter. The default is FALSE.
fill (logical) Block fill the boxes or violins with the group colour. The default is FALSE.
... Additional slots and values passed to struct_class.
```

Value

A feature_boxplot object.

Examples

```
D = MTBLS79_DatasetExperiment
C = feature_boxplot(factor_name='Species',feature_to_plot='Petal.Width')
chart_plot(C,D)
```

feature_profile

Feature profile

Description

A plot visualising the change in intensity of a feature with a continuous variable such as time, dose, or run order.

Usage

```
feature_profile(
  run_order,
  qc_label,
  qc_column,
  colour_by,
  feature_to_plot,
  plot_sd = FALSE,
  ...
)
```

Arguments

run_order	(character) The sample-meta column name containing run order.
qc_label	(character) The label used to identify QC samples.
qc_column	(character) The sample-meta column name containing the labels used to identify QC samples.
colour_by	(character) The sample-meta column name to used to colour the plot.

feature_profile_array 31

feature_to_plot

(numeric, character, integer) The name or column id of the plotted feature.

plot_sd

(logical) Plot standard deviation. Allowed values are limited to the following:

- "TRUE": Standard deviation of samples and QCs are included on the plot.
- "FALSE": Standard deviation is not plotted.

The default is FALSE.

. . . Additional slots and values passed to struct_class.

Value

A feature_profile object.

Examples

```
D = MTBLS79_DatasetExperiment()
C = feature_profile(run_order='run_order',
    qc_label='QC',
    qc_column='Class',
    colour_by='Class',
    feature_to_plot=1)
chart_plot(C,D)
```

feature_profile_array Feature profile

Description

A plot visualising the change in intensity of a feature with a continuous variable such as time, dose, or run order.

```
feature_profile_array(
  run_order,
  qc_label,
  qc_column,
  colour_by,
  feature_to_plot,
  nrow = 5,
  log = TRUE,
  ...
)
```

32 filter_by_name

Arguments

run_order (character) The sample-meta column name containing run order. (character) The label used to identify QC samples. qc_label (character) The sample-meta column name containing the labels used to identify qc_column QC samples. colour_by (character) The sample-meta column name to used to colour the plot. feature_to_plot (numeric, character, integer) The name or column id of the plotted feature. (numeric, integer) The number of rows in the plot. The default is 5. nrow (logical) Log transform. Allowed values are limited to the following: log • "TRUE": The data is log tranformed before plotting. • "FALSE": The data is not transformed before plotting. The default is TRUE. Additional slots and values passed to struct_class.

Value

A feature_profile_array object.

Examples

```
D = MTBLS79_DatasetExperiment()
C = feature_profile_array(
    run_order='run_order',
    qc_label='QC',
    qc_column='Class',
    colour_by='Class',
    feature_to_plot=1:3,
    nrow=1,
    log=TRUE)
chart_plot(C,D)
```

filter_by_name

Filter by name

Description

A filter to subsample a DatasetExperiment object based on sample or feature name, id, row/column index or using a vector of TRUE/FALSE.

```
filter_by_name(mode = "exclude", dimension = "sample", names, ...)
```

filter_na_count 33

Arguments

mode "include" or ["exclude"] to subsample a DatasetExperiment by including or ex-

cluding samples/features based on the provided labels

dimension ["sample"] or "variable" to filter by sample or feature labels

names the sample/feature identifiers to filter by. Can provide column names, column

indices or logical.

. . . additional slots and values passed to struct_class

Value

struct object

Examples

```
D = MTBLS79_DatasetExperiment()
M = filter_by_name(mode='exclude',dimension='variable',names=c(1,2,3))
M = model_apply(M,D)
```

filter_na_count

Minimum number of measured values filter

Description

The number of measured values is counted for each feature, and any feature with less than a predefined minimum number of values in each group is removed. If there are several factors, then the threshold is applied so that the minimum number of samples is present for all combinations (interactions) of groups.

Usage

```
filter_na_count(threshold, factor_name, ...)
```

Arguments

threshold (numeric) The minimum number of samples in each group/interaction.

factor_name (character) The name of a sample-meta column to use.
... Additional slots and values passed to struct_class.

Value

```
A filter_na_count object.
```

```
D = MTBLS79_DatasetExperiment()
M = filter_na_count(threshold=3,factor_name='Class')
M = model_apply(M,D)
```

34 fisher_exact

Description

The data is filtered by so that the named levels of a factor are included/excluded from the dataset.

Usage

```
filter_smeta(mode = "include", levels, factor_name, ...)
```

Arguments

mode (character) Mode of action. Allowed values are limited to the following:

• "include": Samples in the specified levels are retained.

• "exclude": Samples in the specified levels are excluded.

The default is "include".

[character] The level name(s) for filtering.

[character] The name of a sample-meta column to use.

Additional slots and values passed to struct_class.

Value

A filter_smeta object.

Examples

```
D = MTBLS79_DatasetExperiment()
M = filter_smeta(mode='exclude',levels='QC',factor_name='QC')
M = model_apply(M,D)
```

fisher_exact

Fisher Exact Test

Description

A fisher exact test is used to analyse contingency tables by comparing the number of correctly/incorrectly predicted group labels. A multiple test corrected p-value indicates whether the number of measured values is significantly different between groups.

```
fisher_exact(alpha = 0.05, mtc = "fdr", factor_name, factor_pred, ...)
```

fold_change 35

Arguments

alpha (numeric) The p-value cutoff for determining significance. The default is 0.05.

mtc (character) Multiple test correction method. Allowed values are limited to the following:

• "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.

• "fdr": Benjamini and Hochberg False Discovery Rate correction.

• "none": No correction.

The default is "fdr".

factor_name (character) The name of a sample-meta column to use.

factor_pred (data.frame) A data.frame, where each column is a factor of predicted group labels to compare with the true groups labels.

Additional slots and values passed to struct_class.

Value

A fisher_exact object.

Examples

```
# load some data
D=MTBLS79_DatasetExperiment()

# prepare predictions based on NA
pred=as.data.frame(is.na(D$data))
pred=lapply(pred,factor,levels=c(TRUE,FALSE))
pred=as.data.frame(pred)

# apply method
M = fisher_exact(alpha=0.05,mtc='fdr',factor_name='Class',factor_pred=pred)
M=model_apply(M,D)
```

fold_change

Fold change

Description

Fold change is the relative change in mean (or non-parametric equivalent) intensities of a feature between all pairs of levels in a factor.

36 fold_change

Usage

```
fold_change(
   alpha = 0.05,
   factor_name,
   paired = FALSE,
   sample_name = character(0),
   threshold = 2,
   control_group = character(0),
   method = "geometric",
   ...
)
```

Arguments

alpha (numeric) The p-value cutoff for determining significance. The default is 0.05.

factor_name (character) The name of a sample-meta column to use.

paired (logical) Paired fold change. Allowed values are limited to the following:

• "TRUE": Fold change is calculated taking into account paired sampling.

• "FALSE": Fold change is calculated assuming there is no paired sampling.

The default is FALSE.

sample_name (character) The name of a sample_meta column containing sample identifiers

for paired sampling. The default is character(0).

threshold (numeric) The fold change threshold for labelling features as significant. The

default is 2.

control_group (character) The level name of the group used in the denominator (where possi-

ble) when computing fold change. The default is character(0).

method (character) Fold change method. Allowed values are limited to the following:

• "geometric": A log transform and a t-test is used to calculate fold change and estimate confidence intervals. In the non-transformed space this is equivalent to fold change using geometric means.

 "median": A log transform and the method described by Price and Bonett to calculate fold change and estimate confidence intervals. In the nontransformed space this is equivalent to using group medians to calculate fold change.

The default is "geometric".

Additional slots and values passed to struct_class.

Value

A fold_change object.

References

. . .

Price RM, Bonett DG (2002). "Distribution-Free Confidence Intervals for Difference and Ratio of Medians." *Journal of Statistical Computation and Simulation*, **72**(2), 119-124.

fold_change_int 37

Examples

```
D = MTBLS79_DatasetExperiment()
M = fold_change(factor_name='Class')
M = model_apply(M,D)
```

fold_change_int

Fold change for interactions between factors

Description

For more than one factor the fold change calculation is extended to include all combinations of levels (interactions) of all factors. Paired fold changes are not possible for this computation.

Usage

```
fold_change_int(
  alpha = 0.05,
  factor_name,
  threshold = 2,
  control_group = character(0),
  method = "geometric",
  ...
)
```

Arguments

alpha (numeric) The p-value cutoff for determining significance. The default is 0.05.

factor_name (character) The name of a sample-meta column to use.

threshold (numeric) The fold change threshold for labelling features as significant. The

default is 2.

control_group (character) The level names of the groups used in the denominator (where pos-

sible) when computing fold change. One level for each factor, assumed to be in

the same order as factor_name. The default is character(0).

method (character) Fold change method. Allowed values are limited to the following:

- "geometric": A log transform and a t-test is used to calculate fold change and estimate confidence intervals. In the non-transformed space this is equivalent to fold change using geometric means.
- "median": A log transform and the method described by Price and Bonett to calculate fold change and estimate confidence intervals. In the nontransformed space this is equivalent to using group medians to calculate fold change.

The default is "geometric".

.. Additional slots and values passed to struct_class.

38 fold_change_plot

Value

A fold_change_int object.

References

Lloyd GR, Weber RJM (2021). *struct: Statistics in R Using Class-based Templates*. R package version 1.3.1.

Examples

```
D = MTBLS79_DatasetExperiment()
D=D[,1:10,drop=FALSE]
M = filter_smeta(mode='exclude',levels='QC',factor_name='Class') +
    fold_change_int(factor_name=c('Class','Batch'))
M = model_apply(M,D)
```

fold_change_plot

Fold change plot

Description

A plot of fold changes calculated for a chosen subset of features. A predefined fold change threshold is indicated by shaded regions.

Usage

```
fold_change_plot(number_features = 20, orientation = "portrait", ...)
```

Arguments

number_features

(numeric) The number randomly selected features to plot, or a list of column numbers. The default is 20.

orientation

(character) Plot orientation. Allowed values are limited to the following:

- "landscape": Features are plotted on the y-axis.
- "portrait": Features are plotted on the x-axis.

The default is "portrait".

... Additional slots and values passed to struct_class.

Value

A fold_change_plot object.

```
C = fold_change_plot()
```

```
forward_selection_by_rank
```

Forward selection by rank

Description

A model is trained and performance metric computed by including increasing numbers of features in the model. The features to be included in each step are defined by their rank, which is computed from another variable e.g. VIP score. An "optimal" subset of features is suggested by minimising the input performance metric.

Usage

```
forward_selection_by_rank(
   min_no_vars = 1,
   max_no_vars = 100,
   step_size = 1,
   factor_name,
   variable_rank,
   ...
)
```

Arguments

```
min_no_vars (numeric) The minimum number of variables to include in the model. The default is 1.

max_no_vars (numeric) The maximum number of variables to include in the model. The default is 100.

step_size (numeric) The incremental change in number of features in the model. The default is 1.

factor_name (character) The name of a sample-meta column to use.

variable_rank (numeric, integer) The values used to rank the features.

Additional slots and values passed to struct_class.
```

Value

A forward_selection_by_rank object.

```
# some data
D = MTBLS79_DatasetExperiment(filtered=TRUE)
# normalise, impute and scale then remove QCs
P = pqn_norm(qc_label='QC',factor_name='Class') +
    knn_impute(neighbours=5) +
```

40 fs_line

fs_line

Forward selection line plot

Description

A line plot for forward selection. The computed model performance metric is plotted against the number of features included in the model.

Usage

```
fs_line(...)
```

Arguments

.. Additional slots and values passed to struct_class.

Value

A fs_line object.

glog_opt_plot 41

glog_opt_plot

Glog optimisation

Description

A plot of the sum of squares error (SSE) vs different values of lambda for the glog transform. The indicated optimum value for lambda minimises the SSE.

Usage

```
glog_opt_plot(plot_grid = 100, ...)
```

Arguments

```
plot_grid (numeric) The default is 100.
... Additional slots and values passed to struct_class.
```

Details

This object makes use of functionality from the following packages:

```
    pmp
```

Value

```
A glog_opt_plot object.
```

References

Jankevics A, Lloyd GR, Weber RJM (????). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. R package version 1.3.5.

```
D = iris_DatasetExperiment()
M = glog_transform(qc_label='versicolor',factor_name='Species')
M = model_apply(M,D)
C = glog_opt_plot()
chart_plot(C,M,D)
```

42 glog_transform

Description

The generalised logarithm (glog) transformation applies a log transformation while applying an offset to account for technical variation.

Usage

```
glog_transform(qc_label = "QC", factor_name, lambda = NULL, ...)
```

Arguments

```
qc_label (character) The label used to identify QC samples. The default is "QC".

factor_name (character) The name of a sample-meta column to use.

lambda (numeric, NULL) The value of lambda to use. If NULL then the pmp package will be used to determine an "optimal" value for lambda. The default is NULL.

Additional slots and values passed to struct_class.
```

Details

This object makes use of functionality from the following packages:

pmp

Value

A glog_transform object.

References

Jankevics A, Lloyd GR, Weber RJM (????). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. R package version 1.3.5.

Durbin B, Hardin J, Hawkins D, Rocke D (2002). "A variance-stabilizing transformation for gene-expression microarray data." *Bioinformatics*, **18**(Suppl 1), S105-S110.

Parsons HM, Ludwig C, Gunther UL, Viant MR (2007). "Improved classification accuracy in 1- and ', '2-dimensional NMR metabolomics data using the variance', 'stabilising generalised logarithm transformation." *Bioinformatics*, **8**(1), 234.

```
D = iris_DatasetExperiment()
M = glog_transform(qc_label='versicolor',factor_name='Species')
M = model_apply(M,D)
```

grid_search_1d 43

grid_search_1d

One dimensional grid search

Description

A one dimensional grid search calculates a performance metric for a model at evenly spaced values for a model input parameter. The "optimum" value for the parameter is suggested as the one which maximises performance, or minimises error (whichever is appropriate for the chosen metric)

Usage

```
grid_search_1d(
  param_to_optimise,
  search_values,
  model_index,
  factor_name,
  max_min = "min",
  ...
)
```

Arguments

param_to_optimise

(character) The name of the model input parameter that is the focus of the search.

search_values

(ANY) The values of the input parameter being optimised.

model_index

(numeric, integer) The index of the model in the sequence that uses the parameter being optimised.

factor_name

(character) The name of a sample-meta column to use.

max_min

(character) Maximise or minimise. Allowed values are limited to the following:

- "max": The optimium parameter value is suggested based on maximising the performance metric.
- "min": The optimium parameter value is suggested based on minimising the performance metric.

The default is "min".

... Additional slots and values passed to struct_class.

Value

```
A grid_search_1d object.
```

gs_line

Examples

gs_line

Grid search line plot

Description

A plot of the calculated performance metric against the model input parameter values used to train the model. The optimum parameter value is indicated based on minimising (or maximising) the chosen metric.

Usage

```
gs_line(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A gs_line object.

```
C = gs_line()
```

HCA 45

HCA

Hierarchical Cluster Analysis

Description

Hierarchical Cluster Analysis is a numerical technique that uses agglomerative clustering to identify clusters or groupings of samples.

Usage

```
HCA(
  dist_method = "euclidean",
  cluster_method = "complete",
 minkowski_power = 2,
  factor_name,
)
```

Arguments

dist_method

(character) Distance measure. Allowed values are limited to the following:

- "euclidean": The euclidean distance (2 norm).
- "maximum": The maximum distance.
- "manhattan": The absolute distance (1 norm).
- "canberra": A weighted version of the mahattan distance.
- "minkowski": A generalisation of manhattan and euclidean distance to nth

The default is "euclidean".

cluster_method (character) Agglomeration method. Allowed values are limited to the following:

- "ward.D": Ward clustering.
- "ward.D2": Ward clustering using sqaured distances.
- "single": Single linkage.
- "complete": Complete linkage.
- "average": Average linkage (UPGMA).
- "mcquitty": McQuitty linkage (WPGMA).
- "median": Median linkage (WPGMC).
- "centroid": Centroid linkage (UPGMC).

The default is "complete".

minkowski_power

(numeric) The default is 2.

factor_name

(character) The name of a sample-meta column to use.

Additional slots and values passed to struct_class.

hca_dendrogram

Details

This object makes use of functionality from the following packages:

• stats

Value

A HCA object.

References

R Core Team (2021). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Examples

```
D = iris_DatasetExperiment()
M = HCA(factor_name='Species')
M = model_apply(M,D)
```

hca_dendrogram

HCA dendrogram

Description

A dendrogram visualising the clustering by HCA.

Usage

```
hca_dendrogram(...)
```

Arguments

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

• ggdendro

Value

A hca_dendrogram object.

References

de Vries A, Ripley BD (2020). *ggdendro: Create Dendrograms and Tree Diagrams Using 'gg-plot2'*. R package version 0.1.22, https://CRAN.R-project.org/package=ggdendro.

HSD 47

Examples

```
C = hca_dendrogram()
```

HSD

Tukey's Honest Significant Difference

Description

Tukey's HSD post hoc test is a modified t-test applied for all features to all pairs of levels in a factor. It is used to determine which groups are different (if any). A multiple test corrected p-value is computed to indicate which groups are significantly different to the others for each feature.

Usage

```
HSD(alpha = 0.05, mtc = "fdr", formula, unbalanced = FALSE, ...)
```

Arguments

alpha

(numeric) The p-value cutoff for determining significance. The default is 0.05.

mtc

(character) Multiple test correction method. Allowed values are limited to the following:

- following:
 - "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
 - "fdr": Benjamini and Hochberg False Discovery Rate correction.
 - "none": No correction.

The default is "fdr".

formula unbalanced

(formula) A symbolic description of the model to be fitted.

(logical) Unbalanced model. Allowed values are limited to the following:

- "TRUE": A correction is applied for unbalanced designs.
- "FALSE": No correction is applied for unbalanced designs.

The default is FALSE.

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

• agricolae

Value

A HSD object.

48 HSDEM

References

de Mendiburu F (2020). *agricolae: Statistical Procedures for Agricultural Research*. R package version 1.3-3, https://CRAN.R-project.org/package=agricolae.

Examples

```
D = iris_DatasetExperiment()
M = HSD(formula=y~Species)
M = model_apply(M,D)
```

HSDEM

Tukey's Honest Significant Difference using estimated marginal means

Description

Tukey's HSD post hoc test is a modified t-test applied for all features to all pairs of levels in a factor. It is used to determine which groups are different (if any). A multiple test corrected p-value is computed to indicate which groups are significantly different to the others for each feature. For mixed effects models estimated marginal means are used.

Usage

```
HSDEM(alpha = 0.05, mtc = "fdr", formula, ...)
```

Arguments

alpha mtc (numeric) The p-value cutoff for determining significance. The default is 0.05. (character) Multiple test correction method. Allowed values are limited to the

following:

- "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
- "fdr": Benjamini and Hochberg False Discovery Rate correction.
- "none": No correction.

The default is "fdr".

formula

(formula) A symbolic description of the model to be fitted.

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

- emmeans
- nlme

kfoldxcv_grid 49

Value

A HSDEM object.

References

Lenth R (2021). *emmeans: Estimated Marginal Means, aka Least-Squares Means*. R package version 1.5.5-1, https://CRAN.R-project.org/package=emmeans.

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2021). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-152, https://CRAN.R-project.org/package=nlme.

Examples

```
D = iris_DatasetExperiment()
D$sample_meta$id=rownames(D) # dummy id column
M = HSDEM(formula = y~Species+ Error(id/Species))
M = model_apply(M,D)
```

kfoldxcv_grid

k-fold cross validation plot

Description

A graphic for visualising the true class and the predicted class of samples in all groups for all cross-validation folds.

Usage

```
kfoldxcv_grid(factor_name, level, ...)
```

Arguments

```
factor_name (character) The name of a sample-meta column to use.

level (character) The level/group to plot.

Additional slots and values passed to struct_class.
```

Value

A kfoldxcv_grid object.

50 kfold_xval

Examples

```
D = iris_DatasetExperiment()
I = kfold_xval(factor_name='Species') *
          (mean_centre() + PLSDA(factor_name='Species'))
I = run(I,D,balanced_accuracy())

C = kfoldxcv_grid(factor_name='Species',level='setosa')
chart_plot(C,I)
```

kfoldxcv_metric

kfoldxcv metric plot

Description

A boxplot of the performance metric computed for each fold of a k-fold cross-validation.

Usage

```
kfoldxcv_metric(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A kfoldxcv_metric object.

Examples

```
C = kfoldxcv_metric()
```

kfold_xval

k-fold cross-validation

Description

k-fold cross-validation is an iterative approach applied to validate models. The samples are divided into k "folds", or subsets. Each subset is excluded from model training and used for model validation once, resulting in a single left-out prediction for each sample. Model performance metrics are then computed for the training and test sets across all folds.

```
kfold_xval(folds = 10, method = "venetian", factor_name, ...)
```

knn_impute 51

Arguments

folds (numeric, integer) The number of cross-validation folds. The default is 10.

method (character) Fold selection method. Allowed values are limited to the following:

• "venetian": Every nth sample is assigned to the same fold, where n is the number of folds.

• "blocks": Blocks of adjacent samples are assigned to the same fold.

• "random": Samples are randomly assigned to a fold.

The default is "venetian".

factor_name (character) The name of a sample-meta column to use.

Additional slots and values passed to struct_class.

Value

A kfold_xval object.

Examples

```
D = iris_DatasetExperiment()
I = kfold_xval(factor_name='Species') *
          (mean_centre() + PLSDA(factor_name='Species'))
I = run(I,D,balanced_accuracy())
```

knn_impute

kNN missing value imputation

Description

k-nearest neighbour missing value imputation replaces missing values in the data with the average of a predefined number of the most similar neighbours for which the value is present

```
knn_impute(
  neighbours = 5,
  sample_max = 50,
  feature_max = 50,
  by = "features",
  ...
)
```

52 kw_p_hist

Arguments

neighbours	(numeric) The number of neighbours (k) to use for imputation. The default is 5.
sample_max	(numeric) The maximum percent missing values per sample. The default is 50.
feature_max	(numeric) The maximum percent missing values per feature. The default is 50.
by	(character) Impute using similar "samples" or "features". Default features. The default is "features".
	Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

pmp

Value

A knn_impute object.

References

Jankevics A, Lloyd GR, Weber RJM (????). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. R package version 1.3.5.

Examples

```
M = knn_impute()
```

kw_p_hist

Histogram of p values

Description

A histogram of the p-values computed by the kruskal-wallis method

Usage

```
kw_p_hist(...)
```

Arguments

.. Additional slots and values passed to struct_class.

Value

A kw_p_hist object.

```
C = kw_p_hist()
```

kw_rank_sum 53

kw_rank_sum Kruskal-Wallis rank sum test
--

Description

The Kruskal-Wallis test is a univariate hypothesis testing method that allows multiple (n>=2) groups to be compared without making the assumption that values are normally distributed. It is the non-parametric equivalent of a 1-way ANOVA. The test is applied to all variables/features individually, and multiple test corrected p-values are computed to indicate the significance of variables/features.

Usage

```
kw_rank_sum(alpha = 0.05, mtc = "fdr", factor_names, ...)
```

Arguments

alpha (numeric) The p-value cutoff for determining significance. The default is 0.05.
mtc (character) Multiple test correction method. Allowed values are limited to the following:

"bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
"fdr": Benjamini and Hochberg False Discovery Rate correction.
"none": No correction.

The default is "fdr".

factor_names (character) The name of sample meta column(s) to use.

Additional slots and values passed to struct_class.

Value

A kw_rank_sum object.

```
D = iris_DatasetExperiment()
M = kw_rank_sum(factor_names='Species')
M = model_apply(M,D)
```

54 linear_model

linear_model

Linear model

Description

Linear models can be used to carry out regression, single stratum analysis of variance and analysis of covariance.

Usage

```
linear_model(formula, na_action = "na.omit", contrasts = list(), ...)
```

Arguments

formula (formula) A symbolic description of the model to be fitted. na_action

(character) NA action. Allowed values are limited to the following:

• "na.omit": Incomplete cases are removed.

• "na.fail": An error is thrown if NA are present.

• "na.exclude": Incomplete cases are removed, and the output result is padded to the correct size using NA.

• "na.pass": Does not apply a linear model if NA are present.

The default is "na.omit".

contrasts

(list) The contrasts associated with a factor. The default is list.

Additional slots and values passed to struct_class. . . .

Details

This object makes use of functionality from the following packages:

• stats

Value

A linear_model object.

References

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

```
D = iris_DatasetExperiment()
M = linear_model(formula = y~Species)
```

log_transform 55

log_transform

logarithm transform

Description

A logarithmic transform is applied to all values in the data matrix.

Usage

```
log_transform(base = 10, ...)
```

Arguments

base (numeric) The base of the logarithm used for the transform. The default is 10.

Additional slots and values passed to struct_class.

Value

```
A log_transform object. struct object
```

Examples

```
M = log_transform()
```

mean_centre

Mean centre

Description

The mean sample is subtracted from all samples in the data matrix. The features in the centred matrix all have zero mean.

Usage

```
mean_centre(mode = "data", ...)
```

Arguments

mode

(character) Mode of action. Allowed values are limited to the following:

- "data": Centring is applied to the data block.
- "sample_meta": Centring is applied to the sample_meta block.
- "both": Centring is applied to both the data and the sample_meta blocks.

The default is "data".

.. Additional slots and values passed to struct_class.

56 mixed_effect

Value

A mean_centre object.

Examples

```
M = mean_centre()
```

mean_of_medians

Mean of medians

Description

The data matrix is normalised by the mean of the median of each factor level.

Usage

```
mean_of_medians(factor_name, ...)
```

Arguments

```
factor_name (character) The name of a sample-meta column to use.
... Additional slots and values passed to struct_class.
```

Value

 $A \ {\tt mean_of_medians} \ object.$

Examples

```
D = iris_DatasetExperiment()
M = mean_of_medians(factor_name='Species')
M = model_apply(M,D)
```

 ${\tt mixed_effect}$

Mixed effects model

Description

A mixed effects model is an extension of ANOVA where there are both fixed and random effects.

```
mixed_effect(alpha = 0.05, mtc = "fdr", formula, ss_type = "marginal", ...)
```

mixed_effect 57

Arguments

alpha (numeric) The p-value cutoff for determining significance. The default is 0.05.

mtc (character) Multiple test correction method. Allowed values are limited to the following:

- "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
- "fdr": Benjamini and Hochberg False Discovery Rate correction.
- "none": No correction.

The default is "fdr".

formula (formula) A symbolic description of the model to be fitted.

ss_type (character) Sum of squares type. Allowed values are limited to the following:

- "marginal": Type III sum of squares.
- "sequential": Type II sum of squares.

The default is "marginal".

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

- nlme
- emmeans

Value

A mixed_effect object.

References

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2021). *nlme: Linear and Nonlinear Mixed Effects Models*. R package version 3.1-152, https://CRAN.R-project.org/package=nlme.

Lenth R (2021). *emmeans: Estimated Marginal Means, aka Least-Squares Means*. R package version 1.5.5-1, https://CRAN.R-project.org/package=emmeans.

Fox J, Weisberg S (2019). *An R Companion to Applied Regression*, Third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.

```
D = iris_DatasetExperiment()
D$sample_meta$id=rownames(D) # dummy id column
M = mixed_effect(formula = y~Species+ Error(id/Species))
M = model_apply(M,D)
```

Description

Applies method to the input DatasetExperiment

```
## S4 method for signature 'ANOVA, DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'HSD, DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'mixed_effect,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'HSDEM, DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'classical_lsq,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'confounders_clsq,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'constant_sum_norm,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'corr_coef,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'filter_smeta,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'fisher_exact,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'fold_change,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'fold_change_int,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'HCA, DatasetExperiment'
```

```
model_apply(M, D)
## S4 method for signature 'knn_impute, DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'kw_rank_sum,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'log_transform, DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'mean_of_medians,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'nroot_transform,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'pairs_filter,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'prop_na,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'rsd_filter,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'sb_corr,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'split_data,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'stratified_split,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'tSNE,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'ttest,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'vec_norm,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'wilcox_test,DatasetExperiment'
model_apply(M, D)
```

Arguments

```
M a method object
```

D another object used by the first

Value

Returns a modified method object

Examples

Description

Apply a model using the input DatasetExperiment. Assumes the model is trained first.

```
## S4 method for signature 'DFA, DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'PCA, DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'PLSDA, DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'PLSR, DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'autoscale, DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'blank_filter,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'constant_sum_norm,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'dratio_filter,DatasetExperiment'
model_predict(M, D)
```

```
## S4 method for signature 'filter_by_name,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'filter_na_count,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'filter_smeta, DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'glog_transform,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'linear_model,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'mean_centre,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'mv_feature_filter,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'mv_sample_filter,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'pareto_scale,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'pqn_norm,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'SVM, DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'vec_norm,DatasetExperiment'
model_predict(M, D)
```

Arguments

M a model object

D a DatasetExperiment object

Value

Returns a modified model object

```
M = example_model()
M = model_predict(M,iris_DatasetExperiment())
```

 ${\it model_reverse}, autoscale, {\it DatasetExperiment-method} \\ {\it Reverse preprocessing}$

Description

Reverse the effect of a preprocessing step on a DatasetExperiment.

Usage

```
## S4 method for signature 'autoscale,DatasetExperiment'
model_reverse(M, D)
## S4 method for signature 'mean_centre,DatasetExperiment'
model_reverse(M, D)
```

Arguments

M a model object

D a DatasetExperiment object

Value

Returns a modified DatasetExperiment object

Examples

```
M = example_model()
D = model_reverse(M,iris_DatasetExperiment())
```

```
{\it model\_train}, {\it DFA}, {\it DatasetExperiment-method} \\ {\it Train~a~model}
```

Description

Trains a model using the input DatasetExperiment

```
## S4 method for signature 'DFA,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'PCA, DatasetExperiment'
model_train(M, D)
## S4 method for signature 'PLSDA, DatasetExperiment'
model_train(M, D)
## S4 method for signature 'PLSR, DatasetExperiment'
model_train(M, D)
## S4 method for signature 'autoscale,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'blank_filter,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'constant_sum_norm,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'dratio_filter,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'filter_by_name,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'filter_na_count,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'filter_smeta,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'glog_transform,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'linear_model,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'mean_centre,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'mv_feature_filter,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'mv_sample_filter,DatasetExperiment'
model_train(M, D)
```

```
## S4 method for signature 'pareto_scale,DatasetExperiment'
model_train(M, D)

## S4 method for signature 'pqn_norm,DatasetExperiment'
model_train(M, D)

## S4 method for signature 'SVM,DatasetExperiment'
model_train(M, D)

## S4 method for signature 'vec_norm,DatasetExperiment'
model_train(M, D)
```

Arguments

M a model object

D a DatasetExperiment object

Value

Returns a modified model object

Examples

```
M = example_model()
M = model_train(M,iris_DatasetExperiment())
```

MTBLS79_DatasetExperiment

MTBLS79: Direct infusion mass spectrometry metabolomics dataset: a benchmark for data processing and quality control

Description

Direct-infusion mass spectrometry (DIMS) metabolomics is an important approach for characterising molecular responses of organisms to disease, drugs and the environment. Increasingly large-scale metabolomics studies are being conducted, necessitating improvements in both bioanalytical and computational workflows to maintain data quality. This dataset represents a systematic evaluation of the reproducibility of a multi-batch DIMS metabolomics study of cardiac tissue extracts. It comprises of twenty biological samples (cow vs. sheep) that were analysed repeatedly, in 8 batches across 7 days, together with a concurrent set of quality control (QC) samples. Data are presented from each step of the workflow and are available in MetaboLights (https://www.ebi.ac.uk/metabolights/MTBLS79)

```
MTBLS79_DatasetExperiment(filtered = FALSE)
```

mv_boxplot 65

Arguments

filtered

TRUE to load data with quality control filters already applied, or FALSE to load the unfiltered data. Default is FALSE. The raw data is available from (https://www.ebi.ac.uk/metabolights/MTBLS79) and as an R dataset in the pmp package, available on Bioconductor.

Value

DatasetExperiment object

Examples

```
D = MTBLS79_DatasetExperiment()
summary(D)
```

mv_boxplot

Missing value boxplots

Description

Boxplots of the number of missing values per sample/feature.

Usage

```
mv_boxplot(
  label_outliers = TRUE,
  by_sample = TRUE,
  factor_name,
  show_counts = TRUE,
  ...
)
```

Arguments

label_outliers (logical) Label outliers. Allowed values are limited to the following:

- "TRUE": Sample labels for potential outliers are displayed on the plot.
- "FALSE": Sample labels are not included on the plot.

The default is TRUE.

by_sample

(logical) Plot by sample or by feature. Allowed values are limited to the following:

- "TRUE": Missing values are plotted per sample.
- "FALSE": Missing values are plotted per feature.

The default is TRUE.

factor_name

(character) The name of a sample-meta column to use.

show_counts

(logical) Show counts. Allowed values are limited to the following:

66 mv_feature_filter

- "TRUE": The number of samples for each box is displayed.
- "FALSE": The number of samples for each box is not displayed.

The default is TRUE.

.. Additional slots and values passed to struct_class.

Value

A mv_boxplot object.

Examples

```
D = MTBLS79_DatasetExperiment()
C = mv_boxplot(factor_name='Class')
chart_plot(C,D)
```

mv_feature_filter

Filter by fraction missing values

Description

Filters features where the percent number of missing values exceeds a predefined threshold.

Usage

```
mv_feature_filter(
  threshold = 20,
  qc_label = "QC",
  method = "QC",
  factor_name,
  ...
)
```

Arguments

threshold (numeric) The threshold for excluding features. The default is 20.

qc_label (character) The label used to identify QC samples. The default is "QC".

method (character) Filtering method. Allowed values are limited to the following:

 "within_all": The filter is applied within classes.

 "within_one": The filter is applied within any one class.

 "QC": The filter is applied within QC samples.

 "across": The filter is applied across all samples.

The default is "QC".

factor_name (character) The name of a sample-meta column to use.
... Additional slots and values passed to struct_class.

mv_feature_filter_hist 67

Details

This object makes use of functionality from the following packages:

```
    pmp
```

Value

```
A mv_feature_filter object.
```

References

Jankevics A, Lloyd GR, Weber RJM (????). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. R package version 1.3.5.

Examples

```
D = iris_DatasetExperiment()
M = mv_feature_filter(factor_name='Species',qc_label='versicolor')
M = model_apply(M,D)
```

```
mv_feature_filter_hist
```

Histogram of missing values per feature

Description

A histogram of the proportion of missing values per feature.

Usage

```
mv_feature_filter_hist(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

```
A \ {\tt mv\_feature\_filter\_hist} \ object.
```

```
C = mv_feature_filter_hist()
```

68 mv_histogram

mv_histogram

Missing value histogram

Description

A histogram of the numbers of missing values per sample/feature

Usage

```
mv_histogram(label_outliers = TRUE, by_sample = TRUE, ...)
```

Arguments

label_outliers (logical) Label outliers. Allowed values are limited to the following:

- "TRUE": Sample labels for potential outliers are displayed on the plot.
- "FALSE": Sample labels are not included on the plot.

The default is TRUE.

by_sample

(logical) Plot by sample or by feature. Allowed values are limited to the following:

- "TRUE": Missing values are plotted per sample.
- "FALSE": Missing values are plotted per feature.

The default is TRUE.

... additional slots and values passed to struct_class

Value

```
A mv_histogram object. struct object
```

```
D = MTBLS79_DatasetExperiment()
C = mv_histogram(label_outliers=FALSE,by_sample=FALSE)
chart_plot(C,D)
```

mv_sample_filter 69

mv_sample_filter

Missing value sample filter

Description

Filters samples by removing those where the percent number of missing values exceeds a predefined threshold.

Usage

```
mv_sample_filter(mv_threshold = 20, ...)
```

Arguments

```
mv_threshold (numeric) The theshold for excluding samples. The default is 20.... Additional slots and values passed to struct_class.
```

Details

This object makes use of functionality from the following packages:

pmp

Value

A mv_sample_filter object.

References

Jankevics A, Lloyd GR, Weber RJM (????). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. R package version 1.3.5.

```
C = mv_sample_filter()
```

70 nroot_transform

```
mv_sample_filter_hist Histogram of missing values per sample
```

Description

A histogram of the the proportion of missing values per sample

Usage

```
mv_sample_filter_hist(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

```
A mv_sample_filter_hist object.
```

Examples

```
C = mv_sample_filter_hist()
```

nroot_transform

nth root transform

Description

All values in the data matrix are transformed by raising them to the power of 1/n.

Usage

```
nroot_transform(root = 2, ...)
```

Arguments

root (numeric) The nth root used for the transform. The default is 2.

... Additional slots and values passed to struct_class.

Value

A nroot_transform object.

```
M = nroot_transform()
```

pairs_filter 71

pairs_filter

Pairs filter

Description

This filter is used for study designs with paired sampling to ensure that measurements from the same source (e.g. patient) are represented in all factor levels and interactions.

Usage

```
pairs_filter(factor_name, sample_id, ...)
```

Arguments

```
factor_name (character) The name of a sample-meta column to use.

sample_id (character) Name of sample meta column containing sample identifiers.

Additional slots and values passed to struct_class.
```

Value

```
A pairs_filter object. struct object
```

Examples

```
M=pairs_filter(factor_name='Class',sample_id='ids')
```

pareto_scale

Pareto scaling

Description

The mean sample is subtracted from all samples and then scaled by the square root of the standard deviation. The transformed data has zero mean.

Usage

```
pareto_scale(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A pareto_scale object.

72 pca_biplot

Examples

```
D = iris_DatasetExperiment()
M = pareto_scale()
M = model_train(M,D)
M = model_predict(M,D)
```

PCA

Principal Component Analysis (PCA)

Description

PCA is a multivariate data reduction technique. It summarises the data in a smaller number of Principal Components that maximise variance.

Usage

```
PCA(number_components = 2, ...)
```

Arguments

number_components

(numeric, integer) The number of Principal Components calculated. The default is 2.

... Additional slots and values passed to struct_class.

Value

A PCA object.

Examples

```
M = PCA()
```

pca_biplot

PCA biplot

Description

A scatter plot of the selected principal component scores overlaid with the corresponding principal component loadings.

73 pca_biplot

Usage

```
pca_biplot(
  components = c(1, 2),
  points_to_label = "none",
  factor_name,
  scale_factor = 0.95,
  style = "points",
  label_features = FALSE,
)
```

Arguments

components (numeric) The principal components used to generate the plot. The default is c(1,2).

points_to_label

(character) points_to_label. Allowed values are limited to the following:

- "none": No samples are labelled on the plot.
- "all": All samples are labelled on the plot.
- "outliers": Potential outliers are labelled on the plot.

The default is "none".

factor_name

(character) The name of a sample-meta column to use.

scale_factor

(numeric) The scaling factor applied to the loadings. The default is 0.95.

style

(character) Plot style. Allowed values are limited to the following:

- "points": Loadings and scores are plotted as a scatter plot.
- "arrows": The loadings are plotted as arrow vectors.

The default is "points".

label_features (logical) Add feature labels. Allowed values are limited to the following:

- "TRUE": Features are labelled.
- "FALSE": Features are not labelled.

The default is FALSE.

Additional slots and values passed to struct_class.

Value

A pca_biplot object.

```
C = pca_biplot(factor_name='Species')
```

74 pca_dstat_plot

Description

A plot of the correlation between the variables/features and the selected principal component scores. Features with high correlation are well represented by the selected component(s)

Usage

```
pca_correlation_plot(components = c(1, 2), ...)
```

Arguments

components (numeric) The Principal Components used to generate the plot. The default is c(1,2).
 Additional slots and values passed to struct_class.

Value

A pca_correlation_plot object.

Examples

```
C = pca_correlation_plot()
```

pca_dstat_plot

d-statistic plot

Description

A bar chart of the d-statistics for samples in the input PCA model. Samples above the indicated threshold are considered to be outlying.

Usage

```
pca_dstat_plot(number_components = 2, alpha = 0.05, ...)
```

Arguments

 $number_components$

(numeric) The number of principal components to use. The default is 2.

alpha (numeric) A confidence threshold for rejecting samples based on the d-statistic.

The default is 0.05.

... Additional slots and values passed to struct_class.

75 pca_loadings_plot

Value

```
A pca_dstat_plot object.
```

Examples

```
C = pca_dstat_plot()
```

pca_loadings_plot

PCA loadings plot

Description

A barchart (one component) or scatter plot (two components) of the selected principal component loadings.

Usage

```
pca_loadings_plot(
  components = c(1, 2),
  style = "points",
  label_features = NULL,
)
```

Arguments

components

(numeric) The principal components used to generate the plot. The default is

c(1,2).

style

(character) Plot style. Allowed values are limited to the following:

- "points": Loadings and scores are plotted as a scatter plot.
- "arrows": The loadings are plotted as arrow vectors.

The default is "points".

label_features (character, NULL) Feature labels. Allowed values are limited to the following:

- "character()": A vector of labels for the features.
- "NULL": No labels.
- "row.names": Labels will be extracted from the column names of the data matrix.

The default is NULL.

Additional slots and values passed to struct_class. . . .

Value

A pca_loadings_plot object.

```
C = pca_loadings_plot()
```

76 pca_scores_plot

pca_scores_plot

PCA scores plot

Description

Plots a 2d scatter plot of the selected components

Usage

```
pca_scores_plot(
  components = c(1, 2),
  points_to_label = "none",
  factor_name,
  ellipse = "all",
  ellipse_type = "norm",
  ellipse_confidence = 0.95,
  label_filter = character(0),
  label_factor = "rownames",
  label_size = 3.88,
  ...
)
```

Arguments

components (numeric) The components selected for plotting. The default is c(1,2). points_to_label

(character) Points to label. Allowed values are limited to the following:

- "none": No samples labels are displayed.
- "all": The labels for all samples are displayed.
- "outliers": Labels for for potential outlier samples are displayed.

The default is "none".

factor_name

(character) The name of a sample-meta column to use.

ellipse

(character) Plot ellipses. Allowed values are limited to the following:

- "all": Ellipses are plotted for all groups and all samples.
- "group": Ellipses are plotted for all groups.
- "none": Ellipses are not included on the plot.
- "sample": An ellipse is plotted for all samples (ignoring group).

The default is "all".

ellipse_type

(character) Type of ellipse. Allowed values are limited to the following:

- "norm": Multivariate normal (p = 0.95).
- "t": Multivariate t (p = 0.95).

The default is "norm".

pca_scree_plot 77

ellipse_confidence

(numeric) The confidence level for plotting ellipses. The default is 0.95.

label_filter (character) Labels are only plotted for the named groups. If zero-length then all

groups are included. The default is character(0).

label_factor (character) The column name of sample_meta to use for labelling samples on

the plot. "rownames" will use the row names from sample_meta. The default is

"rownames".

label_size (numeric) The text size of labels. Note this is not in Font Units. The default is

3.88.

... Additional slots and values passed to struct_class.

Value

A pca_scores_plot object.

Examples

```
D = iris_DatasetExperiment()
M = mean_centre() + PCA()
M = model_apply(M,D)
C = pca_scores_plot(factor_name = 'Species')
chart_plot(C,M[2])
```

pca_scree_plot

Scree plot

Description

A plot of the percent variance and cumulative percent variance for the components of a PCA model.

Usage

```
pca_scree_plot(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

```
A pca_scree_plot object. struct object
```

```
C = pca_scree_plot()
```

permutation_test_plot

permutation_test

Permutation test

Description

A permutation test generates a "null" model by randomising the response (for regression models) or group labels (for classification models). This is repeated many times to generate a distribution of performance metrics for the null model. This distribution can then be compared to the performance of the true model. If there is overlap between the true and null model performances then the model is overfitted.

Usage

```
permutation_test(number_of_permutations = 50, factor_name, ...)
```

Arguments

```
number_of_permutations
(numeric, integer) The number of permutations. The default is 50.
factor_name (character) The name of a sample-meta column to use.
... Additional slots and values passed to struct_class.
```

Value

A permutation_test object.

Examples

```
I=permutation_test(factor_name='Species')
```

```
permutation_test_plot permutation_test_plot class
```

Description

Plots the results of a permutation test.

Usage

```
permutation_test_plot(style = "boxplot", binwidth = 0.05, ...)
```

Arguments

```
style The plot style. One of 'boxplot', 'violin', 'histogram', 'density' or 'scatter'.
binwidth Binwidth for the "histogram" style. Ignored for all other styles.
... additional slots and values passed to struct_class
```

permute_sample_order 79

Value

struct object

Examples

```
C = permutation_test_plot(style='boxplot')
```

Description

The order of samples in the data matrix is randomly permuted. The relationship between the samples and the sample meta data is maintained.

Usage

```
permute_sample_order(number_of_permutations = 10, ...)
```

Arguments

```
number_of_permutations (numeric, integer) The number of times the sample order is permuted. The default is 10.
```

... Additional slots and values passed to struct_class.

Value

```
A permute_sample_order object.
```

```
C = permute_sample_order()
```

80 PLSDA

PLSDA

Partial least squares discriminant analysis

Description

PLS is a multivariate regression technique that extracts latent variables maximising covariance between the input data and the response. The Discriminant Analysis variant uses group labels in the response variable and applies a threshold to the predicted values in order to predict group membership for new samples.

Usage

```
PLSDA(number_components = 2, factor_name, ...)
```

Arguments

```
(numeric,\,integer)\,The\,\,number\,\,of\,\,PLS\,\,components.\,\,The\,\,default\,\,is\,\,2. factor_name (character) The name of a sample-meta column to use.
```

Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

• pls

Value

A PLSDA object.

References

Mevik B, Wehrens R, Liland K (2020). pls: Partial Least Squares and Principal Component Regression. R package version 2.7-3, https://CRAN.R-project.org/package=pls.

Perez NF, Ferre J, Boque R (2009). "Calculation of the reliability of classification in discriminant partial least-squares binary classification." *Chemometrics and Intelligent Laboratory Systems*, **95**(2), 122-128.

Barker M, Rayens W (2003). "Partial least squares for discrimination." *Journal of Chemometrics*, **17**(3), 166-173.

```
M = PLSDA('number_components'=2, factor_name='Species')
```

plsda_predicted_plot 81

Description

A plot of the regression coefficients from a PLSDA model.

Usage

```
plsda_predicted_plot(factor_name, style = "boxplot", ...)
```

Arguments

```
factor_name (character) The name of a sample-meta column to use.

style (character) Plot style. Allowed values are limited to the following:

• "boxplot": A boxplot.

• "violin": A violin plot.

• "density": A density plot.

The default is "boxplot".

Additional slots and values passed to struct_class.
```

Details

This object makes use of functionality from the following packages:

- pls
- ggplot2

Value

A plsda_predicted_plot object.

References

Mevik B, Wehrens R, Liland K (2020). pls: Partial Least Squares and Principal Component Regression. R package version 2.7-3, https://CRAN.R-project.org/package=pls.

Wickham H (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

```
D = iris_DatasetExperiment()
M = mean_centre()+PLSDA(factor_name='Species')
M = model_apply(M,D)

C = plsda_predicted_plot(factor_name='Species')
chart_plot(C,M[2])
```

82 plsda_roc_plot

Description

Plots the regression coefficients of a PLSDA model.

Usage

```
plsda_regcoeff_plot(level, ...)
```

Arguments

the group label to plot regression coefficients for additional slots and values passed to struct_class

Value

struct object

Examples

```
D = iris_DatasetExperiment()
M = mean_centre()+PLSDA(factor_name='Species')
M = model_apply(M,D)

C = plsda_regcoeff_plot(level='setosa')
chart_plot(C,M[2])
```

plsda_roc_plot

PLSDA ROC plot

Description

A Receiver Operator Characteristic (ROC) plot for PLSDA models computed by adjusting the threshold for assigning group labels from PLS predictions.

Usage

```
plsda_roc_plot(factor_name, ...)
```

Arguments

```
factor_name (character) The name of a sample-meta column to use.
... Additional slots and values passed to struct_class.
```

plsda_scores_plot 83

Details

This object makes use of functionality from the following packages:

- pls
- ggplot2

Value

```
A plsda_roc_plot object.
```

References

Mevik B, Wehrens R, Liland K (2020). pls: Partial Least Squares and Principal Component Regression. R package version 2.7-3, https://CRAN.R-project.org/package=pls.

Wickham H (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

Examples

```
D = iris_DatasetExperiment()
M = mean_centre()+PLSDA(factor_name='Species')
M = model_apply(M,D)

C = plsda_roc_plot(factor_name='Species')
chart_plot(C,M[2])
```

plsda_scores_plot

PLSDA scores plot

Description

A scatter plot of the selected PLSDA scores.

Usage

```
plsda_scores_plot(
  components = c(1, 2),
  points_to_label = "none",
  factor_name,
  ...
)
```

84 plsda_scores_plot

Arguments

```
components (numeric) The components selected for plotting. The default is c(1,2).

points_to_label

(character) Points to label. Allowed values are limited to the following:

• "none": No samples labels are displayed.

• "all": The labels for all samples are displayed.

• "outliers": Labels for potential outlier samples are displayed.

The default is "none".

factor_name (character) The name of a sample-meta column to use.
```

Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

- pls
- ggplot2

Value

A plsda_scores_plot object.

References

Mevik B, Wehrens R, Liland K (2020). pls: Partial Least Squares and Principal Component Regression. R package version 2.7-3, https://CRAN.R-project.org/package=pls.

Wickham H (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

```
D = iris_DatasetExperiment()
M = mean_centre()+PLSDA(factor_name='Species')
M = model_apply(M,D)

C = plsda_scores_plot(factor_name='Species')
chart_plot(C,M[2])
```

plsda_vip_plot 85

		- ·	
plsda_	VlD	plot	

PLSDA VIP plot

Description

A plot of the Variable Importance for Projection (VIP) scores for a PLSDA model.

Usage

```
plsda_vip_plot(threshold = 1, level, ...)
```

Arguments

threshold (numeric, integer) The threshold for indicating significant features. The default is 1.

level (character) The factor level (group) to plot.

Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

- pls
- ggplot2

Value

A plsda_vip_plot object.

References

Mevik B, Wehrens R, Liland K (2020). pls: Partial Least Squares and Principal Component Regression. R package version 2.7-3, https://CRAN.R-project.org/package=pls.

Wickham H (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

```
D = iris_DatasetExperiment()
M = mean_centre()+PLSDA(factor_name='Species')
M = model_apply(M,D)

C = plsda_vip_plot(level='setosa')
chart_plot(C,M[2])
```

```
plsda_vip_summary_plot
```

PLSDA VIP summary plot

Description

A plot of the Variable Importance for Projection (VIP) scores for a PLSDA model for the top selected features.

Usage

```
plsda_vip_summary_plot(n_features = 50, ...)
```

Arguments

n_features (numeric, integer) The number of features to include in the summary. The default is 50.

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

- pls
- ggplot2
- reshape2
- cowplot

Value

A plsda_vip_summary_plot object.

References

Mevik B, Wehrens R, Liland K (2020). pls: Partial Least Squares and Principal Component Regression. R package version 2.7-3, https://CRAN.R-project.org/package=pls.

Wickham H (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

Wickham H (2007). "Reshaping Data with the reshape Package." *Journal of Statistical Software*, **21**(12), 1–20. http://www.jstatsoft.org/v21/i12/.

Wilke C (2020). *cowplot: Streamlined Plot Theme and Plot Annotations for 'ggplot2*'. R package version 1.1.1, https://CRAN.R-project.org/package=cowplot.

PLSR 87

Examples

```
D = iris_DatasetExperiment()
M = mean_centre()+PLSDA(factor_name='Species')
M = model_apply(M,D)

C = plsda_vip_summary_plot(n_features=30)
chart_plot(C,M[2])
```

PLSR

Partial least squares regression

Description

PLS is a multivariate regression technique that extracts latent variables maximising covariance between the input data and the response. For regression the response is a continuous variable.

Usage

```
PLSR(number_components = 2, factor_name, ...)
```

Arguments

Details

This object makes use of functionality from the following packages:

• pls

Value

A PLSR object.

References

Mevik B, Wehrens R, Liland K (2020). pls: Partial Least Squares and Principal Component Regression. R package version 2.7-3, https://CRAN.R-project.org/package=pls.

```
M = PLSR(factor_name='run_order')
```

88 plsr_prediction_plot

plsr_cook_dist

Cook's distance barchart

Description

A barchart of Cook's distance for each sample used to train a PLSR model. Cook's distance is used to estimate the influence of a sample on the model and can be used to identify potential outliers.

Usage

```
plsr_cook_dist(...)
```

Arguments

.. Additional slots and values passed to struct_class.

Value

```
A plsr_cook_dist object.
```

Examples

```
C = plsr_cook_dist()
```

```
plsr_prediction_plot PLSR prediction plot
```

Description

A scatter plot of the true response values against the predicted values for a PLSR model.

Usage

```
plsr_prediction_plot(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

```
A plsr_prediction_plot object.
```

```
C = plsr_prediction_plot()
```

plsr_qq_plot 89

plsr_qq_plot

PLSR QQ plot

Description

A plot of the quantiles of the residuals from a PLSR model against the quantiles of a normal distribution.

Usage

```
plsr_qq_plot(...)
```

Arguments

.. Additional slots and values passed to struct_class.

Value

```
A plsr_qq_plot object.
```

Examples

```
C = plsr_qq_plot()
```

plsr_residual_hist

PLSR residuals histogram

Description

A histogram of the residuals for a PLSR model.

Usage

```
plsr_residual_hist(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

```
A plsr_residual_hist object.
```

```
C = plsr_residual_hist()
```

90 pqn_norm

pqn_norm

Probabilistic Quotient Normalisation (PQN)

Description

PQN is used to normalise for differences in concentration between samples. It makes use of Quality Control (QC) samples as a reference. PQN scales by the median change relative to the reference in order to be more robust against changes caused by response to perturbation.

Usage

```
pqn_norm(
  qc_label = "QC",
  factor_name,
  qc_frac = 0,
  sample_frac = 0,
  ref_method = "mean",
  ref_mean = NULL,
)
```

Arguments

(character) The label used to identify QC samples. The default is "QC". qc_label

factor_name (character) The name of a sample-meta column to use.

qc_frac (numeric) A value between 0 and 1 to indicate the minimum proportion of QC samples a feature must be present in for it to be included when computing the

reference. Default $qc_frac = 0$. The default is 0.

sample_frac (numeric) A value between 0 and 1 to indicate the minimum proportion of sam-

ples a feature must be present in for it to be considered when computing the

normalisation coefficients. . The default is 0.

ref_method (character) Reference computation method. Allowed values are limited to the following:

> • "mean": The reference is computed as the mean of the samples matching the qc label input.

> • "median": The reference is computed as the median of the samples matching the qc_label_input.

The default is "mean".

ref_mean (numeric, NULL) A single sample to use as the reference for normalisation.

If set to NULL then the reference will be computed based on the other input parameters (ref_mean, qc_label etc). . The default is NULL.

Additional slots and values passed to struct_class.

pqn_norm_hist 91

Details

This object makes use of functionality from the following packages:

```
    pmp
```

Value

A pqn_norm object.

References

Jankevics A, Lloyd GR, Weber RJM (????). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. R package version 1.3.5.

Examples

```
D = iris_DatasetExperiment()
M = pqn_norm(factor_name='Species',qc_label='all')
M = model_apply(M,D)
```

pqn_norm_hist

PQN coefficient histogram

Description

A histogram of the PQN coefficients for all features

Usage

```
pqn_norm_hist(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A pqn_norm_hist object.

```
C = pqn_norm_hist()
```

92 prop_na

prop_na

Fisher's exact test for missing values

Description

A Fisher's exact test is used to compare the number of missing values in each group. Multiple test corrected p-values are computed to indicate whether there is a significant difference in the number of missing values across groups for each feature.

Usage

```
prop_na(alpha = 0.05, mtc = "fdr", factor_name, ...)
```

Arguments

alpha (numeric) The p-value cutoff for determining significance. The default is 0.05.

mtc (character) Multiple test correction method. Allowed values are limited to the following:

• "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.

• "fdr": Benjamini and Hochberg False Discovery Rate correction.

• "none": No correction.

The default is "fdr".

factor_name (character) The name of a sample-meta column to use.

... Additional slots and values passed to struct_class.

Value

```
A prop_na object. struct object
```

```
M = prop_na(factor_name='Species')
```

rsd_filter 93

Description

An RSD filter calculates the relative standard deviation (the ratio of the standard deviation to the mean) for all features. Any feature with an RSD greater than a predefined threshold is excluded.

Usage

```
rsd_filter(rsd_threshold = 20, qc_label = "QC", factor_name, ...)
```

Arguments

rsd_threshold	(numeric) The RSD threshold above which features are removed. The default is 20.
qc_label	(character) The label used to identify QC samples. The default is "QC".
factor_name	(character) The name of a sample-meta column to use.
	Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

pmp

Value

A rsd_filter object.

References

Jankevics A, Lloyd GR, Weber RJM (????). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. R package version 1.3.5.

```
M = rsd_filter(factor_name='Class')
```

rsd_filter_hist

RSD histogram

Description

A histogram of the calculated RSD values.

Usage

```
rsd_filter_hist(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A rsd_filter_hist object.

Examples

```
C = rsd_filter_hist()
```

run,bootstrap,DatasetExperiment,metric-method

Runs an iterator, applying the chosen model multiple times.

Description

Running an iterator will apply the iterator a number of times to a DatasetExperiment. For example, in cross-validation the same model is applied multiple times to the same data, splitting it into training and test sets. The input metric object can be calculated and collected for each iteration as an output.

Usage

```
## S4 method for signature 'bootstrap,DatasetExperiment,metric'
run(I, D, MET = NULL)

## S4 method for signature 'forward_selection_by_rank,DatasetExperiment,metric'
run(I, D, MET)

## S4 method for signature 'grid_search_1d,DatasetExperiment,metric'
run(I, D, MET)
```

r_squared 95

```
## S4 method for signature 'kfold_xval,DatasetExperiment,metric'
run(I, D, MET = NULL)

## S4 method for signature 'permutation_test,DatasetExperiment,metric'
run(I, D, MET = NULL)

## S4 method for signature 'permute_sample_order,DatasetExperiment,metric'
run(I, D, MET)
```

Arguments

I an iterator object

D a DatasetExperiment object

MET a metric object

Value

Modified iterator object

Examples

```
D = iris_DatasetExperiment() # get some data
MET = metric() # use a metric
I = example_iterator() # initialise iterator
models(I) = example_model() # set the model
I = run(I,D,MET) # run
```

r_squared

Coefficient of determination (R-squared)

Description

R-squared is a metric used to assess the goodness of fit for regression models. It measures how much variance of one variable can be explained by another variable.

Usage

```
r_squared(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A r_squared object.

96 sb_corr

Examples

```
MET = r\_squared()
```

sb_corr

Signal/batch correction for mass spectrometry data

Description

Applies Quality Control Robust Spline (QC-RSC) method to correct for signal drift and batch differences in mass spectrometry data.

Usage

```
sb_corr(
   order_col,
   batch_col,
   qc_col,
   smooth = 0,
   use_log = TRUE,
   min_qc = 4,
   qc_label = "QC",
   spar_lim = c(-1.5, 1.5),
   ...
)
```

Arguments

order_col	(character) The column name of sample_meta indicating the run order of the samples.
batch_col	(character) The column name of sample_meta indicating the batch each sample was measured in.
qc_col	(character) The column name of sample_meta indicating the group each sample is a member of.
smooth	(numeric) The amount of smoothing applied (0 to 1). If set to 0 the smoothing parameter will be estimated using leave-one-out cross-validation. The default is θ .
use_log	 (logical) Log tranformation. Allowed values are limited to the following: "TRUE": The data is log transformed prior to performing signal correction. "FALSE": Signal correction is applied to the input data. The default is TRUE.
min_qc	(numeric) The minimum number of QC samples required for signal correction. The default is 4 .
qc_label	(character) The label used to identify QC samples. The default is "QC".

split_data 97

spar_lim (numeric) A two element vector specifying the upper and lower limits when 'spar = 0'. Allows the value of 'spar' to be constrained within these limits to prevent overfitting. The default is c(-1.5,1.5).
... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

pmp

Value

```
A sb_corr object. struct object
```

References

Jankevics A, Lloyd GR, Weber RJM (????). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. R package version 1.3.5.

Kirwan JA, Broadhurst DI, Davidson RL, Viant MR (2013). "Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow." *Analytical and Bioanalytical Chemistry*, **405**(15), 5147-5157.

Examples

Description

The data matrix is divided into two subsets. A predefined proportion of the samples are randomly selected for a training set, and the remaining samples are used for the test set.

Usage

```
split_data(p_train, ...)
```

Arguments

p_train (numeric) The proportion of samples selected for the training set.... Additional slots and values passed to struct_class.

Value

```
A split_data object.
```

98 structToolbox

Examples

```
M = split_data(p_train=0.75)
```

stratified_split

Stratified sampling

Description

The dataset is divided into two subsets. A predefined proportion of samples from each level of a factor is selected for the training set, and the remaining samples are used for the test set. The stratification by factor level means that the relative number of samples per level is approximately equal to the original dataset.

Usage

```
stratified_split(p_train, factor_name, ...)
```

Arguments

```
p_train (numeric) The proportion of samples selected for the training set.

factor_name (character) The name of a sample-meta column to use.

Additional slots and values passed to struct_class.
```

Value

```
A stratified_split object.
```

Examples

```
D = iris_DatasetExperiment()
M = stratified_split(p_train=0.75, factor_name='Species')
M = model_apply(M,D)
```

structToolbox

structToolbox: Examples of tools built using the Statistics in R Using Class Templates (struct) package

Description

This package extends the classes defined in the struct package

SVM 99

SVM

Support Vector Machine Classifier

Description

Support Vector Machines (SVM) are a machine learning algorithm for classification. They can make use of kernel functions to generate highly non-linear boundaries between groups.

Usage

```
SVM(
  factor_name,
  kernel = "linear",
  degree = 3,
  gamma = 1,
  coef0 = 0,
  cost = 1,
  class_weights = NULL,
  ...
)
```

Arguments

```
(character) The name of a sample-meta column to use.
factor_name
kernel
                   (character) Kernel type. Allowed values are limited to the following:
                     • "linear":.
                     • "polynomial": .
                     • "radial":.
                     • "sigmoid": .
                  The default is "linear".
                   (numeric) The polynomial degree. The default is 3.
degree
                  (numeric) The gamma parameter. The default is 1.
gamma
coef0
                   (numeric) The offset coefficient. The default is 0.
                  (numeric) The cost of violating the constraints. The default is 1.
cost
                  (numeric, character, NULL) A named vector of weights for the different classes.
class_weights
                   Specifying "inverse" will choose the weights inversely proportional to the class
                   distribution. The default is NULL.
                   Additional slots and values passed to struct_class.
```

Details

This object makes use of functionality from the following packages:

• e1071

100 svm_plot_2d

Value

```
A SVM object. struct object
```

References

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2021). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.7-6, https://CRAN.R-project.org/package=e1071.

Brereton RG, Lloyd GR (2010). "Support Vector Machines for classification and regression." *The Analyst*, **135**(2), 230-267.

Examples

```
M = SVM(factor_name='Species',gamma=1)
```

svm_plot_2d

SVM scatter plot

Description

A scatter plot of the input data by group and the calculated boundary of a SVM model.

Usage

```
svm_plot_2d(factor_name, npoints = 100, ...)
```

Arguments

factor_name (character) The name of a sample-meta column to use.

npoints (numeric) The number of grid points used to plot the boundary. The default is

100.

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

• e1071

Value

A svm_plot_2d object.

tic_chart 101

References

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2021). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.7-6, https://CRAN.R-project.org/package=e1071.

Examples

```
D = iris_DatasetExperiment()
M = filter_smeta(mode='exclude',levels='setosa',factor_name='Species') +
    mean_centre()+PCA(number_components=2)+
    SVM(factor_name='Species',kernel='linear')
M = model_apply(M,D)

C = svm_plot_2d(factor_name='Species')
chart_plot(C,M[4],predicted(M[3]))
```

tic_chart

Total Ion Count chart.

Description

A scatter plot of Total Ion Count (sum of each sample) versus run order.

Usage

```
tic_chart(run_order, factor_name, ...)
```

Arguments

run_order (character) The column name of sample_meta indicating the run order of the samples.

factor_name (character) The name of a sample-meta column to use.

Additional slots and values passed to struct_class.

Value

A tic_chart object.

```
D = iris_DatasetExperiment()
D$sample_meta$run_order=1:nrow(D)
C = tic_chart(factor_name='Species',run_order='run_order')
chart_plot(C,D)
```

tSNE

tSNE tSNE

Description

t-Distributed Stochastic Neighbor Embedding.

Usage

```
tSNE(
  dims = 2,
  perplexity = 30,
  max_iter = 100,
  theta = 0.5,
  check_duplicates = FALSE,
  init = NULL,
  eta = 200,
  ...
)
```

Arguments

(numeric) The number of tSNE dimensions computed. The default is 2. dims perplexity (numeric) Perplexity parameter. The default is 30. (numeric) The maximum number of tSNE iterations. The default is 100. max_iter (numeric) Speed/accuracy trade-off. A value of 0 gives an exact tSNE. The theta default is 0.5. check_duplicates (logical) Check for duplicates. Allowed values are limited to the following: • "TRUE": Checks for the presence of exact duplicate samples. • "FALSE": Does not check for exact duplicate samples. The default is FALSE. init (NULL, data.frame, DatasetExperiment) A set of coordinates for initialising the tSNE algorithm. NULL uses random initialisation. The default is NULL.

(numeric) The learning rate parameter. The default is 200.

Additional slots and values passed to struct_class.

Details

eta

This object makes use of functionality from the following packages:

• Rtsne

Value

A tSNE object.

tSNE_scatter 103

References

van der Maaten L, Hinton G (2008). "Visualizing High-Dimensional Data Using t-SNE." *Journal of Machine Learning Research*, **9**, 2579-2605.

van der Maaten L (2014). "Accelerating t-SNE using Tree-Based Algorithms." *Journal of Machine Learning Research*, **15**, 3221-3245.

Krijthe JH (2015). *Rtsne: T-Distributed Stochastic Neighbor Embedding using Barnes-Hut Implementation*. R package version 0.15, https://github.com/jkrijthe/Rtsne.

Examples

```
M = tSNE()
```

tSNE_scatter

Feature boxplot

Description

plots the new representation of data after applying tSNE.

Usage

```
tSNE_scatter(factor_name, ...)
```

Arguments

factor_name (character) The name of a sample-meta column to use.
... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

• Rtsne

Value

A tSNE_scatter object.

References

van der Maaten L, Hinton G (2008). "Visualizing High-Dimensional Data Using t-SNE." *Journal of Machine Learning Research*, **9**, 2579-2605.

van der Maaten L (2014). "Accelerating t-SNE using Tree-Based Algorithms." *Journal of Machine Learning Research*, **15**, 3221-3245.

Krijthe JH (2015). *Rtsne: T-Distributed Stochastic Neighbor Embedding using Barnes-Hut Implementation*. R package version 0.15, https://github.com/jkrijthe/Rtsne.

104 ttest

Examples

```
M = tSNE_scatter(factor_name='Species')
```

ttest

t-test

Description

A t-test compares the means of two factor levels. Multiple-test corrected p-values are used to indicate the significance of the computed difference for all features.

Usage

```
ttest(
  alpha = 0.05,
 mtc = "fdr",
  factor_names,
 paired = FALSE,
 paired_factor = character(0),
  equal_variance = FALSE,
)
```

Arguments

alpha mtc

(numeric) The p-value cutoff for determining significance. The default is 0.05. (character) Multiple test correction method. Allowed values are limited to the following:

- "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
- "fdr": Benjamini and Hochberg False Discovery Rate correction.
- "none": No correction.

The default is "fdr".

factor_names

(character) The name of sample meta column(s) to use.

paired

(logical) Apply a paired t-test. The default is FALSE.

paired_factor

(character) The factor name that encodes the sample id for pairing. The default is character(0).

equal_variance (logical) Equal variance. Allowed values are limited to the following:

- "TRUE": The variance of each group is treated as being equal using the pooled variance to estimate the variance.
- "FALSE": The variance of each group is not assumed to be equal and the Welch (or Satterthwaite) approximation is used.

The default is FALSE.

Additional slots and values passed to struct_class.

vec_norm 105

Value

A ttest object.

Examples

```
M = ttest(factor_name='Class')
```

vec_norm

Vector normalisation

Description

The samples in the data matrix are normalised to account for differences in concentration by scaling each sample such that the sum of squares is equal to 1.

Usage

```
vec_norm(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

```
A vec_norm object. struct object
```

Examples

```
M = vec_norm()
```

wilcox_p_hist

Histogram of p values

Description

A histogram of p values for the wilcoxon signed rank test

Usage

```
wilcox_p_hist(...)
```

106 wilcox_test

Arguments

... Additional slots and values passed to struct_class.

Value

A wilcox_p_hist object.

Examples

```
M = wilcox_p_hist()
```

wilcox_test

wilcoxon signed rank test

Description

A Mann-Whitney-Wilcoxon signed rank test compares ,the ranks of values in two groups. It is the non-parametric equivalent of a t-test. Multiple test corrected p-values are computed as indicators of significance for each variable/feature.

Usage

```
wilcox_test(
   alpha = 0.05,
   mtc = "fdr",
   factor_names,
   paired = FALSE,
   paired_factor = character(0),
   ...
)
```

Arguments

alpha mtc (numeric) The p-value cutoff for determining significance. The default is 0.05. (character) Multiple test correction method. Allowed values are limited to the following:

- "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
- "fdr": Benjamini and Hochberg False Discovery Rate correction.
- "none": No correction.

The default is "fdr".

factor_names

(character) The name of a sample-meta column to use.

paired

(logical) Apply a paired test. The default is FALSE.

paired_factor

(character) The factor name containing sample ids for paired data. The default

is character(0).

... Additional slots and values passed to struct_class.

wilcox_test 107

Value

```
A wilcox_test object. struct object
```

```
M = wilcox_test(factor_name='Class')
```

Index

```
ANOVA, 5
                                                                                              chart_plot,DatasetExperiment_dist,DatasetExperiment-method
as_data_frame, 6
                                                                                                                (chart_plot,dfa_scores_plot,DFA-method),
as_data_frame, filter_na_count-method
                (as_data_frame), 6
                                                                                               chart_plot,DatasetExperiment_factor_boxplot,DatasetExperiment
as_data_frame, ttest-method
                                                                                                                (chart_plot,dfa_scores_plot,DFA-method),
                (as_data_frame), 6
as_data_frame,wilcox_test-method
                                                                                               chart_plot,DatasetExperiment_heatmap,DatasetExperiment-met
                (as_data_frame), 6
                                                                                                                (chart_plot,dfa_scores_plot,DFA-method),
AUC, 7
autoscale, 7
                                                                                               chart_plot,dfa_scores_plot,DFA-method,
balanced_accuracy, 8
                                                                                               chart_plot,feature_boxplot,DatasetExperiment-method
blank_filter, 9
                                                                                                                (chart_plot,dfa_scores_plot,DFA-method),
blank_filter_hist, 10
bootstrap, 11
                                                                                               chart_plot,feature_profile,DatasetExperiment-method
                                                                                                                (chart_plot,dfa_scores_plot,DFA-method),
calculate (calculate, AUC-method), 11
                                                                                                                12
calculate, AUC-method, 11
                                                                                               chart_plot, feature_profile, sb_corr-method
calculate, balanced_accuracy-method
                                                                                                                (chart_plot, dfa_scores_plot, DFA-method),
                (calculate, AUC-method), 11
calculate, r_squared-method
                                                                                               chart_plot,feature_profile_array,DatasetExperiment-method
                (calculate, AUC-method), 11
                                                                                                                (chart_plot, dfa_scores_plot, DFA-method),
chart_plot
                (chart_plot, dfa_scores_plot, DFA-method).
                                                                                               chart_plot,fold_change_plot,fold_change-method
                                                                                                                (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,blank_filter_hist,blank_filter-method
                (chart_plot,dfa_scores_plot,DFA-method),
                                                                                               chart_plot, fs_line, forward_selection_by_rank-method
                                                                                                                (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,compare_dist,DatasetExperiment-method
                (chart_plot, dfa_scores_plot, DFA-method),
                                                                                               chart_plot,glog_opt_plot,glog_transform-method
chart\_plot, confounders\_lsq\_barchart, confounders\_clsq-\textit{field} \textit{plot}, dfa\_scores\_plot, DFA-method), and the confounders\_clsq-\textit{field} \textit{plot}, dfa\_scores\_plot, DFA-method), and the confounders\_clsq-\textit{field} \textit{plot}, dfa\_scores\_plot, DFA-method), and the confounders\_clsq-\textit{field} \textit{plot}, dfa\_scores\_plot, d
                (chart_plot,dfa_scores_plot,DFA-method),
                                                                                               chart_plot,gs_line,grid_search_1d-method
chart\_plot, confounders\_lsq\_boxplot, confounders\_clsq-media_plot, dfa\_scores\_plot, DFA-method), \\
                (chart_plot,dfa_scores_plot,DFA-method),
                                                                                               chart_plot,hca_dendrogram,HCA-method
chart_plot,DatasetExperiment_boxplot,DatasetExperimen(tcharthoplot,dfa_scores_plot,DFA-method),
                (chart_plot,dfa_scores_plot,DFA-method),
                 12
                                                                                               chart_plot,kfoldxcv_grid,kfold_xval-method
```

```
(chart_plot, dfa_scores_plot, DFA-method),
                                                                                                       (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,kfoldxcv_metric,kfold_xval-method chart_plot,plsda_scores_plot,PLSDA-method
               (chart_plot,dfa_scores_plot,DFA-method),
                                                                                                       (chart_plot,dfa_scores_plot,DFA-method),
                12
chart_plot,kw_p_hist,kw_rank_sum-method
                                                                                        chart_plot,plsda_vip_plot,PLSDA-method
               (chart_plot,dfa_scores_plot,DFA-method),
                                                                                                       (chart_plot, dfa_scores_plot, DFA-method),
chart\_plot, mv\_boxplot, DatasetExperiment-metho \textit{d} hart\_plot, plsda\_vip\_summary\_plot, PLSDA-method
               (chart_plot,dfa_scores_plot,DFA-method),
                                                                                                       (chart_plot,dfa_scores_plot,DFA-method),
chart_plot, mv_feature_filter_hist, mv_feature_filater_blotsr_cook_dist, PLSR-method
               (chart_plot,dfa_scores_plot,DFA-method),
                                                                                                       (chart_plot, dfa_scores_plot, DFA-method),
chart\_plot, mv\_histogram, Dataset Experiment-met \textbf{\textit{hba}} rt\_plot, plsr\_prediction\_plot, PLSR-method
               (chart_plot, dfa_scores_plot, DFA-method),
                                                                                                       (chart_plot, dfa_scores_plot, DFA-method),
               12
chart\_plot, mv\_sample\_filter\_hist, mv\_sample\_fi \underline{\textbf{dher}} + \underline{\textbf{melhod}} \\ plsr\_qq\_plot, PLSR-method
                                                                                                       (chart_plot,dfa_scores_plot,DFA-method),
               (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,pca_biplot,PCA-method
                                                                                        chart_plot,plsr_residual_hist,PLSR-method
                                                                                                       (chart_plot,dfa_scores_plot,DFA-method),
               (chart_plot, dfa_scores_plot, DFA-method),
                                                                                        chart_plot,pqn_norm_hist,pqn_norm-method
chart_plot,pca_correlation_plot,PCA-method
               (chart_plot, dfa_scores_plot, DFA-method),
                                                                                                       (chart_plot,dfa_scores_plot,DFA-method),
               12
                                                                                                       12
                                                                                        chart_plot,rsd_filter_hist,rsd_filter-method
chart_plot,pca_dstat_plot,PCA-method
               (chart_plot,dfa_scores_plot,DFA-method),
                                                                                                       (chart_plot,dfa_scores_plot,DFA-method),
                                                                                        chart_plot,svm_plot_2d,SVM-method
chart_plot,pca_loadings_plot,PCA-method
               (chart_plot,dfa_scores_plot,DFA-method),
                                                                                                       (chart_plot, dfa_scores_plot, DFA-method),
                                                                                        chart_plot,tic_chart,DatasetExperiment-method
chart_plot,pca_scores_plot,PCA-method
                                                                                                       (chart_plot,dfa_scores_plot,DFA-method),
               (chart_plot, dfa_scores_plot, DFA-method),
                                                                                        chart_plot,tSNE_scatter,tSNE-method
chart_plot,pca_scree_plot,PCA-method
                                                                                                       (chart_plot,dfa_scores_plot,DFA-method),
               (chart_plot, dfa_scores_plot, DFA-method),
               12
chart\_plot, permutation\_test\_plot, permutation\_test\_method wilcox\_p\_hist, wilcox\_test-method wilcox\_p\_hist, w
                                                                                                       (chart_plot,dfa_scores_plot,DFA-method),
               (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,plsda_predicted_plot,PLSDA-method classical_lsq, 16
               (chart_plot,dfa_scores_plot,DFA-metho@pmpare_dist,17
                                                                                        confounders_clsq, 17
chart_plot,plsda_regcoeff_plot,PLSDA-method confounders_lsq_barchart, 19
               (\texttt{chart\_plot}, \texttt{dfa\_scores\_plot}, \texttt{DFA-method}) \\ \texttt{nfounders\_lsq\_boxplot}, \\ 20 \\
                                                                                        constant_sum_norm, 20
                                                                                        corr_coef, 21
chart_plot,plsda_roc_plot,PLSDA-method
```

DatasetExperiment_boxplot, 22	<pre>model_apply,classical_lsq,DatasetExperiment-method</pre>	
DatasetExperiment_dist, 23	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>	
DatasetExperiment_factor_boxplot, 24	58	
DatasetExperiment_heatmap, 25	<pre>model_apply,confounders_clsq,DatasetExperiment-method</pre>	
DFA, 26	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>	
dfa_scores_plot, 26	58	
dratio_filter, 28	<pre>model_apply,constant_sum_norm,DatasetExperiment-method</pre>	
feature_boxplot, 29	58	
feature_profile, 30	<pre>model_apply,corr_coef,DatasetExperiment-method</pre>	
<pre>feature_profile_array, 31</pre>	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>	
filter_by_name, 32	58	
filter_na_count, 33	<pre>model_apply,filter_smeta,DatasetExperiment-method</pre>	
filter_smeta, 34	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>	
fisher_exact, 34	58	
fold_change, 35	<pre>model_apply,fisher_exact,DatasetExperiment-method</pre>	
fold_change_int, 37	(model_apply,ANOVA,DatasetExperiment-method),	
fold_change_plot, 38	58	
forward_selection_by_rank, 39	model_apply,fold_change,DatasetExperiment-method	
fs_line, 40	(model_apply,ANOVA,DatasetExperiment-method), 58	
glog_opt_plot, 41	model_apply,fold_change_int,DatasetExperiment-method	
glog_transform, 42	(model_apply, ANOVA, DatasetExperiment-method),	
grid_search_1d, 43	(model_apply,AnovA,DataSetExperiment=method),	
gs_line, 44		
HCA, 45	<pre>model_apply,HCA,DatasetExperiment-method</pre>	
hca_dendrogram, 46		
HSD, 47	model_apply, HSD, DatasetExperiment-method	
HSDEM, 48	<pre>(model_apply, ANOVA, DatasetExperiment-method), 58</pre>	
kfold_xval, 50	model_apply,HSDEM,DatasetExperiment-method	
kfoldxcv_grid, 49	$({\tt model_apply}, {\tt ANOVA}, {\tt DatasetExperiment-method}),$	
kfoldxcv_metric, 50	58	
knn_impute, 51	<pre>model_apply,knn_impute,DatasetExperiment-method</pre>	
kw_p_hist, 52	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>	
kw_rank_sum, 53	58	
	<pre>model_apply,kw_rank_sum,DatasetExperiment-method</pre>	
linear_model, 54	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>	
log_transform, 55	58	
,	<pre>model_apply,log_transform,DatasetExperiment-method</pre>	
mean_centre, 55	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>	
mean_of_medians, 56	58	
mixed_effect, 56	<pre>model_apply,mean_of_medians,DatasetExperiment-method</pre>	
model_apply	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>	
(model_apply,ANOVA,DatasetExperiment-method), 58		
58	model_apply,mixed_effect,DatasetExperiment-method	
<pre>model_apply,ANOVA,DatasetExperiment-method,</pre>	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>	
58	58	

```
model_apply,nroot_transform,DatasetExperiment-method (model_predict,DFA,DatasetExperiment-method),
        (model_apply, ANOVA, DatasetExperiment-method), 60
                                              model_predict,filter_by_name,DatasetExperiment-method
model_apply,pairs_filter,DatasetExperiment-method
                                                      (model_predict, DFA, DatasetExperiment-method),
        (model_apply,ANOVA,DatasetExperiment-method), 60
                                              model_predict,filter_na_count,DatasetExperiment-method
model_apply,prop_na,DatasetExperiment-method
                                                      (model_predict, DFA, DatasetExperiment-method),
        (model_apply, ANOVA, DatasetExperiment-method), 60
                                              model_predict,filter_smeta,DatasetExperiment-method
                                                      (model_predict,DFA,DatasetExperiment-method),
model_apply,rsd_filter,DatasetExperiment-method
        (model_apply, ANOVA, DatasetExperiment-method), 60
        58
                                              model_predict,glog_transform,DatasetExperiment-method
model_apply,sb_corr,DatasetExperiment-method
                                                      (model_predict,DFA,DatasetExperiment-method),
        (model_apply,ANOVA,DatasetExperiment-method), 60
                                              model_predict,linear_model,DatasetExperiment-method
model_apply,split_data,DatasetExperiment-method
                                                      (model_predict, DFA, DatasetExperiment-method),
        (model_apply, ANOVA, DatasetExperiment-method), 60
                                              model\_predict, mean\_centre, DatasetExperiment-method
model_apply,stratified_split,DatasetExperiment-method(model_predict,DFA,DatasetExperiment-method),
        (model_apply, ANOVA, DatasetExperiment-method), 60
                                              model_predict,mv_feature_filter,DatasetExperiment-method
model_apply,tSNE,DatasetExperiment-method
                                                      (model_predict, DFA, DatasetExperiment-method),
        (model_apply,ANOVA,DatasetExperiment-method), 60
                                              model_predict,mv_sample_filter,DatasetExperiment-method
model_apply,ttest,DatasetExperiment-method
                                                      (model_predict, DFA, DatasetExperiment-method),
        (model_apply, ANOVA, DatasetExperiment-method), 60
                                              model_predict,pareto_scale,DatasetExperiment-method
model_apply,vec_norm,DatasetExperiment-method
                                                      (model_predict,DFA,DatasetExperiment-method),
        (model_apply,ANOVA,DatasetExperiment-method), 60
                                              model_predict,PCA,DatasetExperiment-method
model_apply,wilcox_test,DatasetExperiment-method
                                                      (model_predict,DFA,DatasetExperiment-method),
        (model_apply, ANOVA, DatasetExperiment-method), 60
                                              model_predict,PLSDA,DatasetExperiment-method
model_predict
                                                      (model_predict,DFA,DatasetExperiment-method),
        (model_predict, DFA, DatasetExperiment-method), 60
                                              model_predict,PLSR,DatasetExperiment-method
model_predict,autoscale,DatasetExperiment-method
                                                      (model_predict, DFA, DatasetExperiment-method),
        (model_predict,DFA,DatasetExperiment-method), 60
                                              model_predict,pqn_norm,DatasetExperiment-method
model_predict,blank_filter,DatasetExperiment-method (model_predict,DFA,DatasetExperiment-method),
        (model_predict, DFA, DatasetExperiment-method), 60
                                              model_predict,SVM,DatasetExperiment-method
model\_predict, constant\_sum\_norm, DatasetExperiment-met/mooddel\_predict, DFA, DatasetExperiment-method),
        (model_predict, DFA, DatasetExperiment-method), 60
                                              model_predict,vec_norm,DatasetExperiment-method
model_predict,DFA,DatasetExperiment-method,
                                                      (model_predict,DFA,DatasetExperiment-method),
model_predict,dratio_filter,DatasetExperimentmodethodeverse
```

```
(model_reverse,autoscale,DatasetExperimodel_nterblood)pareto_scale,DatasetExperiment-method
                                                                                                                                                                                                                                                                                      (model_train,DFA,DatasetExperiment-method),
model_reverse,autoscale,DatasetExperiment-method,
                                                                                                                                                                                                                                             model_train,PCA,DatasetExperiment-method
                                                                                                                                                                                                                                                                                      (model_train, DFA, DatasetExperiment-method),
model_reverse,mean_centre,DatasetExperiment-method
                                         (model_reverse, autoscale, DatasetExperiment-method),
                                                                                                                                                                                                                                            model_train,PLSDA,DatasetExperiment-method
                                                                                                                                                                                                                                                                                      (model_train, DFA, DatasetExperiment-method),
model_train
                                         (model_train, DFA, DatasetExperiment-method),
                                                                                                                                                                                                                                            model_train,PLSR,DatasetExperiment-method
                                                                                                                                                                                                                                                                                      (model_train, DFA, DatasetExperiment-method),
model_train,autoscale,DatasetExperiment-method
                                          (model_train,DFA,DatasetExperiment-method),
                                                                                                                                                                                                                                           model_train,pqn_norm,DatasetExperiment-method
                                                                                                                                                                                                                                                                                      (model_train, DFA, DatasetExperiment-method),
model_train,blank_filter,DatasetExperiment-method
                                         (model_train, DFA, DatasetExperiment-method);
                                                                                                                                                                                                                                             model_train, SVM, DatasetExperiment-method
model\_train, constant\_sum\_norm, DatasetExperiment-method \\ \\ model\_train, DFA, DatasetExperiment-method), \\ \\ \\ model\_train, DFA, DatasetExperiment-method), \\ \\ model\_train, DFA, DATASETA, DATASET
                                         (model_train,DFA,DatasetExperiment-method)
                                                                                                                                                                                                                                            model_train,vec_norm,DatasetExperiment-method
                                                                                                                                                                                                                                                                                      (model_train,DFA,DatasetExperiment-method),
model_train, DFA, DatasetExperiment-method,
                                                                                                                                                                                                                                                                                      62
\verb|model_train, dratio_filter, Dataset Experiment- \verb|model_train, dratio_filter, drat
                                         (model_train,DFA,DatasetExperiment-method),
                                                                                                                                                                                                                                             mv_feature_filter,66
\verb|model_train, filter_by_name, DatasetExperiment-method| \\ | model_train, filter_by_name, Dataset
                                         \verb|model_train, filter_na_count, DatasetExperiment\_method| \\ | model_train, D
                                         model\_train, filter\_smeta, DatasetExperiment-metappl_s\_filter, 71
                                         (model_train,DFA,DatasetExperiment-method)co_scale,71
                                                                                                                                                                                                                                            PCA, 72
model_train,glog_transform,DatasetExperiment-methodplot,72
                                         (model\_train, DFA, DatasetExperiment-me\\ \verb|bead| \& orrelation\_plot, \verb|74| \\
                                                                                                                                                                                                                                             pca_dstat_plot, 74
\verb|model_train, linear_model, DatasetExperiment-megter \underline{d}_{1} \\ oadings\_plot, 75
                                          (model_train,DFA,DatasetExperiment-me∌bad_scores_plot,76
                                                                                                                                                                                                                                             pca_scree_plot, 77
model_train,mean_centre,DatasetExperiment-methedmutation_test,78
                                         (model_train,DFA,DatasetExperiment-mepherod)utation_test_plot,78
                                                                                                                                                                                                                                            permute_sample_order, 79
model_train, mv_feature_filter, DatasetExperimePHLSDNe,tNOd
                                         (model_train, DFA, DatasetExperiment-mephsda_predicted_plot, 81
                                          62
                                                                                                                                                                                                                                            plsda_regcoeff_plot, 82
model_train,mv_sample_filter,DatasetExperiment iment imed in the second important imediate in the second important impo
                                         (model_train, DFA, DatasetExperiment-mephsda_scores_plot, 83
                                         62
                                                                                                                                                                                                                                            plsda_vip_plot, 85
```

```
plsda_vip_summary_plot, 86
PLSR, 87
plsr_cook_dist, 88
plsr_prediction_plot, 88
plsr_qq_plot, 89
{\tt plsr\_residual\_hist, 89}
pqn_norm, 90
pqn_norm_hist, 91
prop_na, 92
r_squared, 95
rsd_filter, 93
rsd_filter_hist, 94
run
        (run,bootstrap,DatasetExperiment,metric-method),
        94
run,bootstrap,DatasetExperiment,metric-method,
run,forward_selection_by_rank,DatasetExperiment,metric-method
        (run,bootstrap,DatasetExperiment,metric-method),
run,grid_search_1d,DatasetExperiment,metric-method
        (\verb"run,bootstrap,DatasetExperiment,metric-method"),\\
run, kfold\_xval, DatasetExperiment, metric-method
        (run,bootstrap,DatasetExperiment,metric-method),
run,permutation_test,DatasetExperiment,metric-method
        (run,bootstrap,DatasetExperiment,metric-method),
        94
run,permute_sample_order,DatasetExperiment,metric-method
        (run,bootstrap,DatasetExperiment,metric-method),
        94
sb_corr, 96
split_data, 97
stratified_split, 98
structToolbox, 98
SVM, 99
svm_plot_2d, 100
tic_chart, 101
tSNE, 102
tSNE_scatter, 103
ttest, 104
vec_norm, 105
wilcox_p_hist, 105
wilcox_test, 106
```