Package 'SPONGE'

October 3, 2021

Type Package			
Title Sparse Partial Correlations On Gene Expression			
Version 1.14.0			
Author Markus List, Azim Dehghani Amirabad, Dennis Kostka, Marcel H. Schulz			
Maintainer Markus List <markus.list@wzw.tum.de></markus.list@wzw.tum.de>			
Description This package provides methods to efficiently detect competitive endogeneous RNA into actions between two genes. Such interactions are mediated by one or several miRNAs such that both gene and miRNA expression data for a larger number of samples is needed as input.			
License GPL (>=3)			
LazyData TRUE			
RoxygenNote 6.1.1			
Depends R (>= 3.4)			
Suggests testthat, knitr, rmarkdown, visNetwork, ggplot2, ggrepel, gridExtra, digest, doParallel, bigmemory			
Imports Biobase, stats, ppcor, logging, foreach, doRNG, data.table, MASS, expm, gRbase, glmnet, igraph, iterators,			
VignetteBuilder knitr			
biocViews GeneExpression, Transcription, GeneRegulation, NetworkInference, Transcriptomics, SystemsBiology, Regression			
git_url https://git.bioconductor.org/packages/SPONGE			
git_branch RELEASE_3_13			
git_last_commit 30cc6aa			
git_last_commit_date 2021-05-19			
Date/Publication 2021-10-03			
R topics documented:			
ceRNA_interactions			

2 ceRNA_interactions

	fn_elasticnet	3
	fn_gene_miRNA_F_test	4
	fn_get_model_coef	4
	fn_get_rss	5
	fn_get_shared_miRNAs	5
	genes_pairwise_combinations	6
	gene_expr	6
	mircode_ensg	7
	mircode_symbol	7
	mir_expr	8
	mir_interactions	8
	precomputed_cov_matrices	8
	precomputed_null_model	9
	sample_zero_mscor_cov	9
	sample_zero_mscor_data	10
	sponge	11
	sponge_build_null_model	12
	sponge_compute_p_values	13
	sponge_edge_centralities	14
	sponge_gene_miRNA_interaction_filter	14
	sponge_network	16
	sponge_node_centralities	17
	sponge_plot_network	18
	sponge_plot_network_centralities	18
	sponge_plot_simulation_results	19
	sponge_run_benchmark	20
	sponge_subsampling	21
	targetscan_ensg	22
	targetscan_symbol	22
Index		23
	PAYA I	
ceRN	A_interactions ceRNA interactions	

Description

ceRNA interactions

Usage

ceRNA_interactions

Format

A data table of ceRNA interactions typically provided by sponge

check_and_convert_expression_data

Checks if expression data is in matrix or ExpressionSet format and converts the latter to a standard matrix. Alternatively, a big.matrix descriptor object can be supplied to make use of shared memory between parallelized workers through the bigmemory package.

Description

Checks if expression data is in matrix or ExpressionSet format and converts the latter to a standard matrix. Alternatively, a big.matrix descriptor object can be supplied to make use of shared memory between parallelized workers through the bigmemory package.

Usage

```
check_and_convert_expression_data(expr_data)
```

Arguments

expr_data

expr_data as matrix or ExpressionSet

Value

expr_data as matrix

Examples

```
## Not run: check_and_convert_expression_data(gene_expr)
```

fn_elasticnet

Computes an elastic net model

Description

Computes an elastic net model

Usage

```
fn_{elasticnet}(x, y, alpha.step = 0.1)
```

Arguments

x miRNA expression matrix y gene expression vector

alpha.step Step size for alpha, the tuning parameter for elastic net.

fn_get_model_coef

Value

The best model, i.e. the one for which the selected alpha yielded the smallest residual sum of squares error

Description

Perform F test for gene-miRNA elastic net model

Usage

```
fn_gene_miRNA_F_test(g_expr, m_expr, model, p.adj.threshold = NULL)
```

Arguments

g_expr A gene expression matrix with samples in rows and genes in columns

m_expr A miRNA expression matrix with samples in rows and genes in columns. Sam-

ple number and order has to agree with above gene expression matrix

model A nested elastic net model to be tested

p.adj.threshold

Threshold for FDR corrected p-value

Value

return data frame with miRNA, fstat and adjusted p.value (BH).

fn_get_model_coef Extract the model coefficients from an elastic net model

Description

Extract the model coefficients from an elastic net model

Usage

```
fn_get_model_coef(model)
```

Arguments

model An elastic net model

Value

A data frame with miRNAs and coefficients

fn_get_rss 5

fn_get_rss

Compute the residual sum of squares error for an elastic net model

Description

Compute the residual sum of squares error for an elastic net model

Usage

```
fn_get_rss(model, x, y)
```

Arguments

model The elastic net model

x The miRNA expression

y The gene expression

Value

the RSS

fn_get_shared_miRNAs

Identify miRNAs for which both genes have miRNA binding sites aka miRNA response elements in the competing endogeneous RNA hypothesis

Description

Identify miRNAs for which both genes have miRNA binding sites aka miRNA response elements in the competing endogeneous RNA hypothesis

Usage

```
fn_get_shared_miRNAs(geneA, geneB, mir_interactions)
```

Arguments

geneA The first gene geneB The second gene

 ${\tt mir_interactions}$

A named list of genes, where for each gene all miRNA interacting partners are listed

Value

A vector with shared RNAs of the two genes.

6 gene_expr

```
genes_pairwise_combinations
```

Compute all pairwise interactions for a number of genes as indices

Description

Compute all pairwise interactions for a number of genes as indices

Usage

```
genes_pairwise_combinations(number.of.genes)
```

Arguments

```
number.of.genes
```

Number of genes for which all pairwise interactions are needed

Value

data frame with one row per unique pairwise combination. To be used as input for the sponge method.

gene_expr

Gene expression test data set

Description

Gene expression test data set

Usage

gene_expr

Format

A data frame of expression values with samples in columns and genes in rows

mircode_ensg 7

mircode_ensg

mircode predicted miRNA gene interactions

Description

mircode predicted miRNA gene interactions

Usage

mircode_ensg

Format

A matrix gene ensembl ids vs miRNA family names. >=1 if interaction is predicted, 0 otherwise

Source

http://www.mircode.org/download.php

mircode_symbol

mircode predicted miRNA gene interactions

Description

mircode predicted miRNA gene interactions

Usage

mircode_symbol

Format

A matrix gene symbols vs miRNA family names. >=1 if interaction is predicted, 0 otherwise

Source

http://www.mircode.org/download.php

mir_expr

miRNA expression test data set

Description

miRNA expression test data set

Usage

mir_expr

Format

A data frame of expression values with samples in columns and miRNA in rows

mir_interactions

miRNA / gene interactions

Description

miRNA / gene interactions

Usage

mir_interactions

Format

A data frame of regression coefficients typically provided by sponge_gene_miRNA_interaction_filter

```
precomputed_cov_matrices
```

covariance matrices under the null hypothesis that sensitivity correlation is zero

Description

covariance matrices under the null hypothesis that sensitivity correlation is zero

Usage

precomputed_cov_matrices

Format

A list (different gene-gene correlations k) of lists (different number of miRNAs m) of covariance matrices

```
precomputed_null_model
```

A null model for testing purposes

Description

A null model for testing purposes

Usage

```
precomputed_null_model
```

Format

A list (different gene-gene correlations k) of lists (different number of miRNAs m) of sampled mscor values (100 each, computed from 100 samples)

sample_zero_mscor_cov Sampling zero multiple miRNA sensitivity covariance matrices

Description

Sampling zero multiple miRNA sensitivity covariance matrices

Usage

```
sample_zero_mscor_cov(m, number_of_solutions, number_of_attempts = 1000,
  gene_gene_correlation = NULL, random_seed = NULL,
  log.level = "ERROR")
```

Arguments

Value

a list of covariance matrices with zero sensitivity correlation

Examples

```
sample_zero_mscor_cov(m = 1,
number_of_solutions = 1,
gene_gene_correlation = 0.5)
```

```
sample_zero_mscor_data
```

Sample mscor coefficients from pre-computed covariance matrices

Description

Sample mscor coefficients from pre-computed covariance matrices

Usage

```
sample_zero_mscor_data(cov_matrices, number_of_samples = 100,
number_of_datasets = 100)
```

Arguments

```
cov_matrices a list of pre-computed covariance matrices
number_of_samples
the number of samples available in the expression data
number_of_datasets
the number of mscor coefficients to be sampled from each covariance matrix
```

Value

a vector of mscor coefficients

See Also

```
sample_zero_mscor_cov
```

```
#we select from the pre-computed covariance matrices in SPONGE
#100 for m = 5 miRNAs and gene-gene correlation 0.6
cov_matrices_selected <- precomputed_cov_matrices[["5"]][["0.6"]]
sample_zero_mscor_data(cov_matrices = cov_matrices_selected,
number_of_samples = 200, number_of_datasets = 10)</pre>
```

sponge 11

sponge	Compute competing endogeneous RNA interactions using Sparse Par-
Sponge	tial correlations ON Gene Expression (SPONGE)

Description

Compute competing endogeneous RNA interactions using Sparse Partial correlations ON Gene Expression (SPONGE)

Usage

```
sponge(gene_expr, mir_expr, mir_interactions = NULL,
  log.level = "ERROR", log.every.n = 1e+05, log.file = NULL,
  selected.genes = NULL, gene.combinations = NULL,
  each.miRNA = FALSE, min.cor = 0.1, parallel.chunks = 1000,
  random_seed = NULL, result_as_dt = FALSE)
```

Arguments

gene_expr A gene expression matrix with samples in rows and featurs in columns. Alter-

natively an object of class ExpressionSet.

mir_expr A miRNA expression matrix with samples in rows and features in columns.

Alternatively an object of class ExpressionSet.

mir_interactions

A named list of genes, where for each gene we list all miRNA interaction part-

ners that should be considered.

log.level The log level, can be one of "info", "debug", "error"

log.every.n write to the log after every n steps

log.file write log to a file, particularly useful for paralleliyzation

selected genes Operate only on a subset of genes, particularly useful for bootstrapping

gene.combinations

A data frame of combinations of genes to be tested. Gene names are taken from

the first two columns and have to match the names used for gene_expr

each.miRNA Whether to consider individual miRNAs or pooling them.

min.cor Consider only gene pairs with a minimum correlation specified here.

parallel.chunks

Split into this number of tasks if parallel processing is set up. The number should be high enough to guarantee equal distribution of the work load in parallel execution. However, if the number is too large, e.g. in the worst case one chunk per computation, the overhead causes more computing time than can be saved by parallel execution. Register a parallel backend that is compatible with foreach to use this feature. More information can be found in the documentation of the foreach / doParallel packages.

random_seed A random seed to be used for reproducible results result_as_dt whether to return results as data table or data frame

Value

A data frame with significant gene-gene competetive endogenous RNA or 'sponge' interactions

Examples

```
#First, extract miRNA candidates for each of the genes
#using sponge_gene_miRNA_interaction_filter. Here we use a prepared
#dataset mir_interactions.

#Second we compute ceRNA interactions for all pairwise combinations of genes
#using all miRNAs remaining after filtering through elasticnet.
ceRNA_interactions <- sponge(
gene_expr = gene_expr,
mir_expr = mir_expr,
mir_interactions = mir_interactions)</pre>
```

```
sponge_build_null_model
```

Build null model for p-value computation

Description

Build null model for p-value computation

Usage

```
sponge_build_null_model(number_of_datasets = 1e+05, number_of_samples,
  cov_matrices = precomputed_cov_matrices, ks = seq(0.2, 0.9, 0.1),
  m_max = 8, log.level = "ERROR")
```

Arguments

```
number_of_datasets
```

the number of datesets defining the precision of the p-value

 $number_of_samples$

the number of samples in the expression data

cov_matrices pre-computed covariance matrices

ks a sequence of gene-gene correlation values for which null models are computed

m_max null models are build for each elt in ks for 1 to m_max miRNAs

log.level The log level of the logging package

Value

a list (for various values of m) of lists (for various values of k) of lists of simulated data sets, drawn from a set of precomputed covariance matrices

Examples

```
sponge_build_null_model(100, 100,
cov_matrices = precomputed_cov_matrices[1:3], m_max = 3)
```

sponge_compute_p_values

Compute p-values for SPONGE interactions

Description

This method uses pre-computed covariance matrices that were created for various gene-gene correlations (0.2 to 0.9 in steps of 0.1) and number of miRNAs (between 1 and 8) under the null hypothesis that the sensitivity correlation is zero. Datasets are sampled from this null model and allow for an empirical p-value to be computed that is only significant if the sensitivity correlation is higher than can be expected by chance given the number of samples, correlation and number of miRNAs. p-values are adjusted indepdenently for each parameter combination using Benjamini-Hochberg FDR correction.

Usage

```
sponge_compute_p_values(sponge_result, null_model, log.level = "ERROR")
```

Arguments

sponge_result A data frame from a sponge call
null_model optional, pre-computed simulated data
log.level The log level of the logging package

Value

A data frame with sponge results, now including p-values and adjusted p-value

See Also

```
sponge_build_null_model
```

```
sponge_compute_p_values(ceRNA_interactions,
null_model = precomputed_null_model)
```

sponge_edge_centralities

Computes edge centralities

Description

Computes edge betweenness centrality for the ceRNA interaction network induced by the results of the SPONGE method.

Usage

```
sponge_edge_centralities(sponge_result)
```

Arguments

sponge_result The output generated by the sponge method.

Value

data table or data frame with gene, degree, eigenvector and betweenness

See Also

sponge

Examples

```
sponge_edge_centralities(ceRNA_interactions)
```

```
sponge_gene_miRNA_interaction_filter
```

Determine miRNA-gene interactions to be considered in SPONGE

Description

The purpose of this method is to limit the number of miRNA-gene interactions we need to consider in SPONGE. There are 3 filtering steps: 1. variance filter (optional). Only considre genes and miRNAs with variance > var.threshold. 2. miRNA target database filter (optional). Use a miRNA target database provided by the user to filter for those miRNA gene interactions for which evidence exists. This can either be predicted target interactions or experimentally validated ones. 3. For each remaining interaction of a gene and its regulating miRNAs use elastic net regression to achieve a) Feature selection: We only retain miRNAs that influence gene expression b) Effect strength: The sign of the coefficients allows us to filter for miRNAs that down-regulate gene expression. Moreover, we can use the coefficients to rank the miRNAs by their relative effect strength. We strongly recommend setting up a parallel backend compatible with the foreach package. See example and the documentation of the foreach and doParallel packages.

Usage

```
sponge_gene_miRNA_interaction_filter(gene_expr, mir_expr,
 mir_predicted_targets, elastic.net = TRUE, log.level = "ERROR",
 log.file = NULL, var.threshold = NULL, F.test = FALSE,
  F.test.p.adj.threshold = 0.05, coefficient.threshold = -0.05,
 coefficient.direction = "<", select.non.targets = FALSE,</pre>
  random_seed = NULL, parallel.chunks = 100)
```

Arguments

F.test

A gene expression matrix with samples in rows and featurs in columns. Altergene_expr

natively an object of class ExpressionSet.

mir_expr A miRNA expression matrix with samples in rows and features in columns.

Alternatively an object of class ExpressionSet.

mir_predicted_targets

A data frame with miRNA in cols and genes in rows. A 0 indicates the miRNA is not predicted to target the gene, >0 otherwise. If this parameter is NULL all

miRNA-gene interactions are tested

elastic.net Whether to apply elastic net regression filtering or not.

One of 'warn', 'error', 'info' log.level

log.file Log file to write to

var.threshold Only consider genes and miRNA with variance > var.threshold. If this parameter

is NULL no variance filtering is performed.

If true, an F-test is performed on each model parameter to assess its importance for the model based on the RSS of the full model vs the RSS of the nested model without the miRNA in question. This is time consuming and has the potential disadvantage that correlated miRNAs are removed even though they might play

a role in ceRNA interactions. Use at your own risk.

F.test.p.adj.threshold

If F.test is TRUE, threshold to use for miRNAs to be included.

coefficient.threshold

threshold to cross for a regression coefficient to be called significant. depends on the parameter coefficient.direction.

coefficient.direction

If "<", coefficient has to be lower than coefficient.threshold, if ">", coefficient has to be larger than threshold. If NULL, the absolute value of the coefficient has to be larger than the threshold.

select.non.targets

For testing effect of miRNA target information. If TRUE, the method determines as usual which miRNAs are potentially targeting a gene. However, these are then replaced by a random sample of non-targeting miRNAs (without seeds) of the same size. Useful for testing if observed effects are caused by miRNA regulation.

A random seed to be used for reproducible results random_seed

sponge_network

```
parallel.chunks
```

Split into this number of tasks if parallel processing is set up. The number should be high enough to guarantee equal distribution of the work load in parallel execution. However, if the number is too large, e.g. in the worst case one chunk per computation, the overhead causes more computing time than can be saved by parallel execution. Register a parallel backend that is compatible with foreach to use this feature. More information can be found in the documentation of the foreach / doParallel packages.

Value

A list of genes, where for each gene, the regulating miRNA are included as a data frame. For F.test = TRUE this is a data frame with fstat and p-value for each miRNA. Else it is a data frame with the model coefficients.

See Also

sponge

Examples

```
#library(doParallel)
#cl <- makePSOCKcluster(2)
#registerDoParallel(cl)
genes_miRNA_candidates <- sponge_gene_miRNA_interaction_filter(
gene_expr = gene_expr,
mir_expr = mir_expr,
mir_predicted_targets = targetscan_symbol)
#stopCluster(cl)

#If we also perform an F-test, only few of the above miRNAs remain
genes_miRNA_candidates <- sponge_gene_miRNA_interaction_filter(
gene_expr = gene_expr,
mir_expr = mir_expr,
mir_predicted_targets = targetscan_symbol,
F.test = TRUE,
F.test.p.adj.threshold = 0.05)</pre>
```

sponge_network

Prepare a sponge network for plotting

Description

Prepare a sponge network for plotting

Usage

```
sponge_network(sponge_result, mir_data, target.genes = NULL,
    show.sponge.interaction = TRUE, show.mirnas = "none",
    min.interactions = 3)
```

Arguments

sponge_result ceRNA interactions as produced by the sponge method.

mir_data miRNA interactions as produced by sponge_gene_miRNA_interaction_filter

target.genes a character vector to select a subset of genes

show.sponge.interaction

whether to connect ceRNAs

show.mirnas one of none, shared, all

min.interactions

minimum degree of a gene to be shown

Value

a list of nodes and edges

Examples

```
sponge_network(ceRNA_interactions, mir_interactions)
```

sponge_node_centralities

Computes various node centralities

Description

Computes degree, eigenvector centrality and betweenness centrality for the ceRNA interaction network induced by the results of the SPONGE method

Usage

```
sponge_node_centralities(sponge_result, directed = FALSE)
```

Arguments

sponge_result output of the sponge method

directed Whether to consider the input network as directed or not.

Value

data table or data frame with gene, degree, eigenvector and betweenness

See Also

sponge

```
sponge_node_centralities(ceRNA_interactions)
```

Description

Plot a sponge network

Usage

```
sponge_plot_network(sponge_result, mir_data,
  layout = "layout.fruchterman.reingold", force.directed = FALSE, ...)
```

Arguments

sponge_result ceRNA interactions as produced by the sponge method.

mir_data miRNA interactions as produced by sponge_gene_miRNA_interaction_filter

layout one of the layout methods supported in the visNetwork package

force.directed whether to produce a force directed network, gets slow for large networks

... further params for sponge_network

Value

shows a plot

Examples

```
sponge_plot_network(ceRNA_interactions, mir_interactions)
```

```
{\it sponge\_plot\_network\_centralities} \\ {\it plot\ node\ network\ centralities}
```

Description

plot node network centralities

Usage

```
sponge_plot_network_centralities(network_centralities, measure = "all",
    x = "degree", top = 5, base_size = 18)
```

Arguments

```
network_centralities
```

a result from sponge_node_centralities()

measure one of 'all', 'degree', 'ev' or 'btw'

x plot against another column in the data table, defaults to degree

top label the top x samples in the plot

base_size size of the text in the plot

Value

a plot

Examples

```
## Not run:
network_centralities <- sponge_node_centralities(ceRNA_interactions)
sponge_plot_network_centralities(network_centralities)
## End(Not run)</pre>
```

```
sponge_plot_simulation_results
```

Plot simulation results for different null models

Description

Plot simulation results for different null models

Usage

```
sponge_plot_simulation_results(null_model_data)
```

Arguments

```
null_model_data
```

the output of sponge_build_null_model

Value

```
a ggplot2 object
```

```
sponge_plot_simulation_results(precomputed_null_model)
```

sponge_run_benchmark run sponge benchmark where various settings, i.e. with or without regression, single or pooled miRNAs, are compared.

Description

run sponge benchmark where various settings, i.e. with or without regression, single or pooled miRNAs, are compared.

Usage

```
sponge_run_benchmark(gene_expr, mir_expr, mir_predicted_targets,
  number_of_samples = 100, number_of_datasets = 100,
  number_of_genes_to_test = c(25), compute_significance = FALSE,
  folder = NULL)
```

Arguments

A gene expression matrix with samples in rows and featurs in columns. Altergene_expr natively an object of class ExpressionSet. A miRNA expression matrix with samples in rows and features in columns. mir_expr Alternatively an object of class ExpressionSet. mir_predicted_targets (a list of) mir interaction sources such as targetscan, etc. number_of_samples number of samples in the null model number_of_datasets number of datasets to sample from the null model number_of_genes_to_test a vector of numbers of genes to be tested, e.g. c(250,500) compute_significance whether to compute p-values

Value

folder

a list (regression, no regression) of lists (single miRNA, pooled miRNAs) of benchmark results

where the results should be saved, if NULL no output to disk

```
sponge_run_benchmark(gene_expr = gene_expr, mir_expr = mir_expr,
mir_predicted_targets = targetscan_symbol,
number_of_genes_to_test = c(10), folder = NULL)
```

sponge_subsampling 21

sponge_subsampling

Sponge subsampling

Description

Sponge subsampling

Usage

```
sponge_subsampling(subsample.n = 100, subsample.repeats = 10,
   subsample.with.replacement = FALSE, subsample.plot = FALSE,
   gene_expr, mir_expr, ...)
```

Arguments

Value

a summary of the results with mean and standard deviations of the correlation and sensitive correlation.

References

sponge

```
sponge_subsampling(gene_expr = gene_expr,
mir_expr = mir_expr, mir_interactions = mir_interactions,
subsample.n = 10, subsample.repeats = 1)
```

22 targetscan_symbol

targetscan_ensg

targetscan predicted miRNA gene interactions

Description

targetscan predicted miRNA gene interactions

Usage

targetscan_ensg

Format

A matrix gene ensembl ids vs miRNA family names. >=1 if interaction is predicted, 0 otherwise

Source

http://www.targetscan.org/vert_71/

targetscan_symbol

targetscan predicted miRNA gene interactions

Description

targetscan predicted miRNA gene interactions

Usage

targetscan_symbol

Format

A matrix gene symbols vs miRNA family names. >=1 if interaction is predicted, 0 otherwise

Source

http://www.targetscan.org/vert_71/

Index

```
* datasets
    {\tt ceRNA\_interactions, 2}
    gene_expr, 6
    mir_expr, 8
    mir_interactions, 8
    mircode_ensg, 7
    mircode_symbol, 7
    precomputed_cov_matrices, 8
    precomputed_null_model, 9
    targetscan_ensg, 22
    targetscan_symbol, 22
ceRNA_interactions, 2
check_and_convert_expression_data, 3
fn_elasticnet, 3
fn_gene_miRNA_F_test, 4
fn_get_model_coef, 4
fn_get_rss, 5
fn_get_shared_miRNAs, 5
gene_expr, 6
genes_pairwise_combinations, 6
mir_expr, 8
mir_interactions, 8
mircode_ensg, 7
mircode_symbol, 7
precomputed_cov_matrices, 8
precomputed_null_model, 9
sample_zero_mscor_cov, 9
sample\_zero\_mscor\_data, 10
sponge, 11
sponge_build_null_model, 12
sponge_compute_p_values, 13
sponge_edge_centralities, 14
sponge_gene_miRNA_interaction_filter,
sponge_network, 16
```

```
sponge_node_centralities, 17
sponge_plot_network, 18
sponge_plot_network_centralities, 18
sponge_plot_simulation_results, 19
sponge_run_benchmark, 20
sponge_subsampling, 21
targetscan_ensg, 22
targetscan_symbol, 22
```