Package 'EBSeqHMM'

October 7, 2021

Type Package

Title Bayesian analysis for identifying gene or isoform expression changes in ordered RNA-seq experiments

Version 1.26.0

Date 2015-03-21

Author Ning Leng, Christina Kendziorski

Depends EBSeq

Maintainer Ning Leng <lengning1@gmail.com>

Description

The EBSeqHMM package implements an auto-regressive hidden Markov model for statistical analysis in ordered RNA-seq experiments (e.g. time course or spatial course data). The EBSeqHMM package provides functions to identify genes and isoforms that have non-constant expression profile over the time points/positions, and cluster them into expression paths.

License Artistic-2.0

Collate 'EBTest_ext.R' 'EBHMMNBfunForMulti.R' 'EBHMMNBfun.R' 'EBHMMNBMultiEM_2chain.R' 'f0.R' 'LikefunNBHMM.R' 'beta.mom.R' 'EBSeqHMMTest.R' 'GetConfidentCalls.R' 'GetDECalls.R' 'GetAllPaths.R' 'PlotExp.R'

BuildVignettes yes

biocViews ImmunoOncology, StatisticalMethod, DifferentialExpression, MultipleComparison, RNASeq, Sequencing, GeneExpression, Bayesian, HiddenMarkovModel, TimeCourse

git_url https://git.bioconductor.org/packages/EBSeqHMM

git_branch RELEASE_3_13

git_last_commit 1ee1381

git_last_commit_date 2021-05-19

Date/Publication 2021-10-07

R topics documented:

EBSed	qHMM-package	EBSeqHN changes i			•		•	•			ide	ent	ify	ing	3 8	ge	ne-	-ех	pr	es	sio	n
Index																						20
	PlotExp		•	 	•	 •	٠	•	 •	 •	•		•	•	•			•	•		•	18
	LikefunNBHMM .																					
	IsoExampleList																					
	GetDECalls			 																		10
	GetConfidentCalls .			 		 																1.
	GetAllPaths			 																		14
	GeneExampleData			 																		13
	f0			 																		12
	EBTest_ext																					
	EBSeqHMMTest .			 																		9
	EBHMMNBMultiE	M_2chain		 																		7
	EBHMMNBfunFor	Multi		 																		4
	EBHMMNBfun																					
	beta.mom	-																				
	EBSeqHMM-packa	ge		 																		2

Description

The EBSeqHMM package implements an auto-regressive hidden Markov model for statistical analysis in ordered RNA-seq experiments (e.g. time course or spatial course data). The EBSeqHMM package provides functions to identify genes and isoforms that have non-constant expression profile over the time points/positions, and cluster them into expression paths.

Details

Package: EBSeqHMM
Type: Package
Version: 0.99.1
Date: 2014-09-16
License: Artistic-2.0

Author(s)

Ning Leng, Christina Kendziorski Maintainer: Ning Leng <nleng@wisc.edu>

beta.mom 3

References

Leng, N., Li, Y., Mcintosh, B. E., Nguyen, B. K., Duffin, B., Tian, S., Thomson, J. A., Colin, D., Stewart, R. M., and Kendziorski, C. (2014). Ebseq-hmm: A bayesian approach for identifying gene-expression changes in ordered rna-seq experiments.

See Also

EBSeq

Examples

beta.mom

Method of moments estimation (beta distribution)

Description

Method of moments estimation (beta distribution)

Usage

```
beta.mom(qs.in)
```

Arguments

qs.in

A vector contains the numbers that will be fitted with a beta distribution.

Details

beta.mom() function can be used to estimate parameters in a Beta function using method of moments

Value

alpha.hat,beta.hat: Returns the estimation of alpha and beta.

Author(s)

Ning Leng

Examples

```
beta.mom(rbeta(10,1,1))
```

4 EBHMMNBfun

EBHMMNBfun Baum-Welch algorithm for a single hidden markov chain

Description

Baum-Welch algorithm for a single hidden markov chain

Usage

EBHMMNBfun(Data,NgVector=NULL,Conditions, sizeFactors, PriorFC=1.5,homo=TRUE, maxround=5, Pi0=NULL, Tran=NULL,NoTrend=FALSE, NumTranStage=3, FCParam=NULL, AlphaIn=NULL,BetaIn=NULL, StateNames=c("Up","NC","Down"), EM=TRUE, UpdateParam=TRUE, Print=TRUE, OnlyQ=FALSE,WithinCondR=TRUE, PenalizeLowMedQt=.2,PenalizeLowMedVal=10)

Arguments

Data input data, rows are genes/isoforms and columns are samples

NgVector Ng vector; NULL for gene level data

Conditions A factor indicates the condition (time/spatial point) which each sample belongs

to.

sizeFactors a vector indicates library size factors

Tran initial values for transition matrices

Pi0 initial values for starting probabilities

NumTranStage number of states

PriorFC target FC for gridient change StateNames name of the hidden states

homo whether the chain is assumed to be homogenious

max number of iteration

AlphaIn, BetaIn If the parameters are known and the user doesn't want to estimate them from the

data, user may specify them here.

NoTrend if NoTrend=TRUE, initial transition probabilities will be set to be equal

FCParam not in use

Whether estimate the prior parameters of the beta distribution by EM
UpdateParam
Whether update starting probabilities and transition probabilities
OnlyQ=TRUE, the function will only return estimated q's.

WithinCondR By defining WithinCondR=TRUE, estimation of r's are obtained within each

condition. (WithinCondR=FALSE is not suggested here)

Print Whether print the elapsed-time while running the test.

Penalize Low Med, Penalize Low Med Qt, Penalize Low Med Val

Transcripts with median quantile < = PenalizeLowMedQt will be penalized

EBHMMNBfunForMulti 5

Details

EBHMMNBfun() function implements the Balm-Welch algorithm that estimates the starting probabilities and transition probabilities of a single hidden Markov model. Here the emission distribution of each gene is assumed to be a Beta-Negative Binomial distribution with parameters (r_g , alpha, beta), in which alpha and beta are shared by all the genes and r_g is gene specific. If not specified, r_g , alpha and beta will be estimated using method of moments. For isoform data, we assume isoforms from the same Ig group share the same beta^Ig. alpha is shared by all the isoforms and r_g is isoform specific. The user also needs to specify an expected FC.

Value

MAPTerm: the most likely path of each gene/isoform. MAPTermNum: numeric version of MAPTerm.

AllTerm: all possible expression paths considered in the model. PP: posterior probability of being each expression path.

WhichMax: index of the most likely path. Allf: prior probability of being each path.

Pi0Track: estimated starting probabilities of each iteration.

TranTrack: estimated transition probabilities of each iteration.

AlphaTrack, BetaTrack: estimated alpha and beta(s).

LLAll=PostSumForLL.Sum: log likelihood of the model.

Author(s)

Ning Leng

Examples

EBHMMNBfunForMulti

Baum-Welch algorithm for multiple hidden markov chains

Description

Baum-Welch algorithm for multiple hidden markov chains

6 EBHMMNBfunForMulti

Usage

EBHMMNBfunForMulti(Data, PPIn,
NgVector=NULL, Conditions, sizeFactors,
PriorFC=1.5, homo=TRUE, maxround=5,
Pi0=NULL, Tran=NULL, NumTranStage=3,
FCParam=NULL, AlphaIn=NULL, BetaIn=NULL,
StateNames=c("Up","NC","Down"),
EM=TRUE, UpdateParam=TRUE, Print=TRUE, WithinCondR=TRUE,
PenalizeLowMed=TRUE, PenalizeLowMedQt=.2, PenalizeLowMedVal=10)

Arguments

Data input data, rows are genes/isoforms and columns are samples

PPIn PPDE for all adjacent comparisons

NgVector Ng vector; NULL for gene level data

Conditions A factor indicates the condition (time/spatial point) which each sample belongs

to.

sizeFactors a vector indicates library size factors

Tran initial values for transition matrices

Pi0 initial values for starting probabilities

NumTranStage number of states in two chains
PriorFC target FC for gridient change
StateNames name of the hidden states

homo whether the chain is assumed to be homogenious

maxround max number of iteration

AlphaIn, BetaIn If the parameters are known and the user doesn't want to estimate them from the

data, user may specify them here.

FCParam not in use

EM Whether estimate the prior parameters of the beta distribution by EM UpdateParam Whether update starting probabilities and transition probabilities

WithinCondR By defining WithinCondR=TRUE, estimation of r's are obtained within each

condition. (WithinCondR=FALSE is not suggested here)

Print Whether print the elapsed-time while running the test.

PenalizeLowMed, PenalizeLowMedQt, PenalizeLowMedVal

Transcripts with median quantile <= PenalizeLowMedQt will be penalized

Details

EBHMMNBfunForMulti() function implements the Balm-Welch algorithm that estimates the starting probabilities and transition probabilities of a hidden Markov model with multiple chains. Here the emission distribution of each gene is assumed to be a Beta-Negative Binomial distribution with parameters (r_g , alpha, beta) , in which alpha and beta are shared by all the genes and r_g is gene specific. If not specified, r_g , alpha and beta will be estimated using method of moments. For isoform data, we assume isoforms from the same Ig group share the same beta^Ig. alpha is shared by all the isoforms and r_g is isoform specific. The user also needs to specify an expected FC.

Value

MAPTerm: the most likely path of each gene/isoform.

MAPTermNum: numeric version of MAPTerm.

AllTerm: all possible expression paths considered in the model.

PP: posterior probability of being each expression path.

WhichMax: index of the most likely path.

Allf: prior probability of being each path.

Pi0Track: estimated starting probabilities of each iteration.

TranTrack: estimated transition probabilities of each iteration.

AlphaTrack, BetaTrack: estimated alpha and beta(s).

LLAll=PostSumForLL.Sum: log likelihood of the model.

Author(s)

Ning Leng

Examples

```
data(GeneExampleData)
CondVector <- rep(paste("t",1:5,sep=""),each=3)
Conditions <- factor(CondVector, levels=c("t1","t2","t3","t4","t5"))
Sizes <- MedianNorm(GeneExampleData)
tmp <- EBHMMNBfunForMulti(Data=GeneExampleData, PPIn=matrix(1,ncol=15, nrow=100),sizeFactors=Sizes, Conditions=Compared maxround=2)</pre>
```

 ${\sf EBHMMNBMultiEM_2chain}$ Run ${\it EBSeqHMM model with a fixed expected FC}$

Description

Run EBSeqHMM model with a fixed expected FC

Usage

```
EBHMMNBMultiEM_2chain(Data,
NgVector=NULL, Conditions, AllTran=NULL,
AllPi0=NULL, Terms=NULL,
sizeFactors, NumTranStage=c(3,2),PriorFC=2,
StateNames=c("Up","Down"),homo=FALSE,
UpdateRd=5, PIBound=.9, UpdatePI=FALSE,Print=FALSE,
WithinCondR=TRUE,
PenalizeLowMed=TRUE, PenalizeLowMedQt=.1,PenalizeLowMedVal=10)
```

Arguments

Data input data, rows are genes and columns are samples

NgVector Ng vector; NULL for gene level data

Conditions A factor indicates the condition (time/spatial point) which each sample belongs

to.

AllTran initial values for transition matrices
AllPi0 initial values for starting probabilities

Terms Terms

sizeFactors a vector indicates library size factors

StateNames names of the hidden states

NumTranStage number of states in two chains

PriorFC target FC for gridient change

homo whether the chain is assumed to be homogenious

UpdateRd max number of iteration

UpdatePI whether update the mixture proportion of two chains
PIBound upper bound of the mixture proportion of the two chains
Print Whether print the elapsed-time while running the test.

WithinCondR By defining WithinCondR=TRUE, estimation of r's are obtained within each

condition. (WithinCondR=FALSE is not suggested here)

PenalizeLowMed, PenalizeLowMedQt, PenalizeLowMedVal

Transcripts with median quantile <= PenalizeLowMedQt will be penalized

Details

EBHMMNBMultiEM_2chain() function implements the EBSeqHMM model to perform statistical analysis in an RNA-seq experiment with ordered conditions. EBHMMNBMultiEM_2chain() calls EBHMMNBfunForMulti() function to perform Balm-Welch algorithm that estimates the starting probabilities and transition probabilities. Here the emission distribution of each gene is assumed to be a Beta-Negative Binomial distribution with parameters (r_g, alpha, beta), in which alpha and beta are shared by all the genes and r_g is gene specific. If not specified, r_g, alpha and beta will be estimated using method of moments. For isoform data, we assume isoforms from the same Ig group share the same beta^Ig. alpha is shared by all the isoforms and r_gi is isoform specific. The user also needs to specify an expected FC. Function EBSeqHMMTest() runs several models with varying FCs and returns the model with maximum likelihood.

Value

Pi0Out: estimated starting probabilities of each iteration.

TranOut: estimated transition probabilities of each iteration.

Pi: estimated probability of being each chain.

Alpha, Beta: estimated alpha and beta(s).

LLSum: log likelihood of the model.

EBSeqHMMTest 9

QList: estimated q's.

MgAllPP: marginal PP for all paths.

MgAllMAPChar: Most likely path based on MgAllPP.

MgAllMaxVal: Highest PP based on MgAllPP.

PPMatW: Posterior probabilities of being each of the chains.

Author(s)

Ning Leng

Examples

EBSeqHMMTest Identify DE genes and classify them into their most likely path in an RNA-seq experiment with ordered conditions

Description

Identify DE genes and classify them into their most likely path in an RNA-seq experiment with ordered conditions

Usage

```
EBSeqHMMTest(Data,
NgVector=NULL, Conditions, AllTran=NULL,
AllPi0=NULL, Terms=NULL,
sizeFactors, NumTranStage=c(3,2),FCV=2,
homo=FALSE, UpdateRd=10, PIBound=.9, UpdatePI=FALSE,
Print=FALSE,WithinCondR=TRUE,Qtrm=.75,QtrmCut=10,
PenalizeLowMed=TRUE, PenalizeLowMedQt=.1,PenalizeLowMedVal=10)
```

Arguments

Data	input data, rows are genes and columns are samples
------	--

NgVector Ng vector; NULL for gene level data

Conditions A factor indicates the condition (time/spatial point) which each sample belongs

to.

AllPi0 initial values for transition matrices initial values for starting probabilities

10 EBSeqHMMTest

Terms Terms

FCV candidate values for expected FC. Default is 2. If user wants to search through

a list of candidate FCs, he/she may define FCV as a vector. e.g. By defining FCV=seq(1.4,2,.2), the function will search over (1.4 1.6 1.8 2.0). Note that searching over a number of candidate FCs will increase the running time.

sizeFactors a vector indicates library size factors

NumTranStage number of states in two chains

homo whether the chain is assumed to be homogenious

UpdateRd max number of iteration

UpdatePI whether update the mixture proportion of two chains
PIBound upper bound of the mixture proportion of the two chains

Qtrm, QtrmCut Transcripts with Qtrm th quantile <= QtrmCut will be removed before testing.

The default value is Qtrm = 0.75 and QtrmCut=10. By default setting, transcripts that have >75% of the samples with expression less than 10 won't be tested.

WithinCondR By defining WithinCondR=TRUE, estimation of r's are obtained within each

condition. (WithinCondR=FALSE is not suggested here)

Print Whether print the elapsed-time while running the test.

PenalizeLowMed, PenalizeLowMedQt, PenalizeLowMedVal

Transcripts with median quantile < = PenalizeLowMedQt will be penalized

Details

EBSeqHMMTest() function applies EBSeqHMM model with differentexpected FC's and select the optimal FC that maximizes the log likelohood. EBSeqHMMTest() calls EBHMMNBMultiEM_2chain() function which implements the EBSeqHMM model to perform statistical analysis in an RNA-seq experiment with ordered conditions based on a fixed expected FC. EBSeqHMMTest() runs EBHMMNBMultiEM_2chain() with varying FCs (default is seq(1.4,2,.2)). And it will return the results of the model with optimal FC. Here the emission distribution of each gene is assumed to be a Beta-Negative Binomial distribution with parameters (r_g, alpha, beta) , in which alpha and beta are shared by all the genes and r_g is gene specific. If not specified, r_g, alpha and beta will be estimated using method of moments. For isoform data, we assume isoforms from the same Ig group share the same beta^Ig. alpha is shared by all the isoforms and r_gi is isoform specific. The user also needs to specify an expected FC.

Value

Pi0Out: estimated starting probabilities of each iteration.

TranOut: estimated transition probabilities of each iteration.

Pi: estimated probability of being each chain.

Alpha, Beta: estimated alpha and beta(s). LLSum: log likelihood of the model.

QList: estimated q's.

MgAllPP: marginal PP for all paths.

MgAllMAPChar: Most likely path based on MgAllPP.

EBTest_ext 11

MgAllMaxVal: Highest PP based on MgAllPP.

PPMatW: Posterior probabilities of being each of the chains.

FCLikelihood: log likelihood of each FC.

Author(s)

Ning Leng

Examples

EBTest_ext

Extented EBTest function

Description

Extented EBTest function

Usage

```
EBTest_ext(Data,NgVector=NULL,Conditions, sizeFactors, maxround, Pool=FALSE, NumBin=1000, ApproxVal=10^-10, Alpha=NULL, Beta=NULL, Pinput=NULL,Rinput=NULL,PoolLower=.25, PoolUpper=.75,OnlyCalcR=FALSE,Print=TRUE)
```

Arguments

Data Input data, rows are genes/isoforms and columns are samples. Data should con	Data	Input data, rows are	genes/isoforms and	l columns are samples	. Data should come
---	------	----------------------	--------------------	-----------------------	--------------------

from a two condition experiment

NgVector Ng vector; NULL for gene level data

Conditions A factor indicates the condition (time/spatial point) which each sample belongs

to. Only two levels are allowed.

sizeFactors a vector indicates library size factors

maxround number of iteration

Pool While working without replicates, user could define the Pool = TRUE in the

EBTest function to enable pooling.

NumBin By defining NumBin = 1000, EBSeq will group the genes with similar means

together into 1,000 bins.

12 f0

PoolLower, PoolUpper

With the assumption that only subset of the genes are DE in the data set, we take genes whose FC are in the PoolLower - PoolUpper quantile of the FCs as the candidate genes (default is 25 bin, the bin-wise variance estimation is defined as the median of the cross condition variance estimations of the candidate genes within that bin. We use the cross condition variance estimations for the candidate genes and the bin-wise variance estimations of the host bin for the non-candidate genes.

ApproxVal

The variances of the transcripts with mean < var will be approximated as mean/(1-ApproxVal).

Alpha, Beta, PInput, RInput

If the parameters are known and the user doesn't want to estimate them from the data, user may specify them here.

Print

Whether print the elapsed-time while running the test.

OnlyCalcR

if OnlyCalcR=TRUE, the function will only return estimation of r's.

Details

 $EBSeq_ext()$ function is an extension of EBTest() function, which is used to calculate the conditional probability $P(X_g,t \mid X_g,t-1)$. In EBSeqHMM, we assume the conditional distribution is $Beta-Negative\ Binomial$.

Value

See EBTest

Author(s)

Ning Leng

Examples

f0

Calculate the prior predictive distribution of the Beta-Negative Binomial model

Description

Calculate the prior predictive distribution of the Beta-Negative Binomial model

GeneExampleData 13

Usage

```
f0(Input, AlphaIn, BetaIn, EmpiricalR, NumOfGroups, log)
```

Arguments

Input expression values AlphaIn,BetaIn,EmpiricalR

The parameters estimated from last iteration of EM.

NumOfGroups How many transcripts within each Ng group log If set as TRUE, the output will in log scale.

Details

Function f0() will calculate the Beta-Negative Binomial prior predictive probability for a given set of parameters

Value

output a numeric vector, each element shows the prior predictive probability of one gene/isoform

Author(s)

Ning Leng

Examples

GeneExampleData

Simulated gene level data set with 5 ordered conditions

Description

'GeneExampleData' gives the gene level simulated data with 5 ordered conditions, triplicates for each condition. The data set was simulated following the Negative Binomial distribution. The parameters of each gene (mean and overdispersion) were sampled from the empirical estimates from an empirical RNA-Seq data set from Thomson lab at Morgridge Institute for Research.

Format

GeneExampleData is a matrix with 100 genes (rows) and 15 samples (columns).

See Also

IsoExampleList

14 GetAllPaths

Examples

```
data(GeneExampleData)
str(GeneExampleData)
```

GetAllPaths Obtain all possible gene paths for an RNA-seq experiments with ordered conditions

Description

Obtain all possible gene paths for an RNA-seq experiments with ordered conditions

Usage

```
GetAllPaths(EBSeqHMMOut, OnlyDynamic=TRUE)
```

Arguments

EBSeqHMMOut output from EBSeqHMMTest function

OnlyDynamic if specifies as TRUE, only dynamic paths will be shown

Details

GetAllPaths() function may be used to generate all possible expression paths of a particular design.

Value

```
output: a vector of paths. For example, Up-Up-Up-Up, Up-Up-EE-EE, Up-Down-Up-EE, etc.
```

Author(s)

Ning Leng

Examples

GetConfidentCalls 15

GetConfidentCalls Obtain confident gene calls for classifying genes into expression paths	GetConfidentCalls	Obtain confident gene calls for classifying genes into expression paths
---	-------------------	---

Description

Obtain confident gene calls for classifying genes into expression paths

Usage

GetConfidentCalls(EBSeqHMMOut, FDR=.05, cutoff=0.5, OnlyDynamic=TRUE,Paths=NULL)

Arguments

EBSeqHMMOut output from EBSeqHMMTest function

FDR Target FDR, default is 0.05.

cutoff cutoff to use for defining a confident call. Genes with PP_path greater or equal

to cutoff will be called as a confident call. Default is 0.5.

OnlyDynamic if specifies as T, only dynamic paths will be shown

Paths paths that are of interest. Default is NULL. If it is not specified, all possible

paths will be considered.

Details

Function GetConfidentCalls() can be used to obtain a list of DE genes/isoforms with user specific cutoffs. To obtain a list of DE genes/isoforms with a target FDR alpha, the user may specify FDR=alpha. To further choose genes/isoforms with high posterior probability of being its most likely path, the user may specify the option cutoff (default is 0.5). Then genes or isoforms with PP(most likely path) > 0.5 will be selected

Value

Overall: a list of genes/isoforms that are identified as DE under the target FDR, shown are their names and PPs; EachPath: a list object, each sublist contains confident calls (genes/isoforms) that have PP(path)>=cutoff for a particular expression path, shown are their names and PPs; NumEach: length of each sublist in EachPath. EachPathName: gene/isoform names in each of the sublists in EachPath

Note

Output: output a list of genes that are classified to a expression path as a confident assignment.

Author(s)

Ning Leng

16 GetDECalls

Examples

GetDECalls

Obtain DE gene/isoform list at a certain FDR

Description

Obtain DE gene/isoform list at a certain FDR

Usage

```
GetDECalls(EBSeqHMMOut,FDR=.05)
```

Arguments

EBSeqHMMOut output from EBSeqHMMTest function

FDR Target FDR; default is 0.05

Details

Function GetDECalls() can be used to obtain a list of DE genes/isoforms with user specific cutoffs. To obtain a list of DE genes/isoforms with a target FDR alpha, the user may specify FDR=alpha.

Value

a list of genes/isoforms that are identified as DE under the target FDR, shown are their names and PPs;

Note

Output: output a list of genes that are DE in at least one condition in an RNA-seq experiment with multiple ordered conditions

Author(s)

Ning Leng

IsoExampleList 17

Examples

IsoExampleList

Simulated isoform level data set with 5 ordered conditions

Description

'IsoExampleList' gives the isoform level simulated data with 5 ordered conditions, triplicates for each condition. The data set was simulated following the Negative Binomial distribution. The parameters of each isoform (mean and overdispersion) were sampled from the isoform level empirical estimates from an empirical RNA-Seq data set from Thomson lab at Morgridge Institute for Research.

Format

IsoExampleList is a list with three components. IsoExampleList\$IsoExampleData contains a matrix with 200 isoform (rows) and 15 samples (columns). IsoExampleList\$IsoNames contains a vector of isoform names. IsoformExampleList\$IsosGeneNames contains a vector indicating the gene each isoform belongs to.

See Also

GeneExampleData

Examples

```
data(IsoExampleList)
str(IsoExampleList)
```

LikefunNBHMM

Likelihood function of the Beta-Negative Binomial HMM Model

Description

Likelihood function of the Beta-Negative Binomial HMM Model

Usage

```
LikefunNBHMM(ParamPool, InputPool)
```

Arguments

ParamPool The parameters that will be estimated in EM.

InputPool The control parameters that will not be estimated in EM

Details

The likelihood function of the Beta-Negative Binomial HMM model used in EBSeqHMM. EBSeqHMM uses optim() function to obtain the optimal estimates that minimizes the likelihood.

Value

optimal estimates of the parameters of interest

Author(s)

Ning Leng

Examples

```
data(GeneExampleData)
tmp <- GeneExampleData[1:10,]
In <- list(tmp,1,5,10,3,tmp,rep(1,15),as.factor(rep(1:5,each=3)), 10,cbind(rep(.5,10),rep(1,10),rep(2,10)))
Start <- c(1,1)
LikefunNBHMM(Start,In)</pre>
```

PlotExp

Plot expression of a single gene

Description

Plot expression of a single gene

Usage

```
PlotExp(NormalizedData, Conditions, Name)
```

Arguments

NormalizedData Expression data after adjusting for library size factors

Conditions sample conditions

Name name of the gene/isoform of interest

Details

PlotExp() function will generate line plots for genes or isoforms of interest.

PlotExp 19

Value

PlotExp() funtion will generate line plots for genes or isoforms of interest.

Author(s)

Ning Leng

Examples

```
data(GeneExampleData)
CondVector <- rep(paste("t",1:5,sep=""),each=3)
Conditions <- factor(CondVector, levels=c("t1","t2","t3","t4","t5"))
Sizes <- MedianNorm(GeneExampleData)
NormData <- GetNormalizedMat(GeneExampleData, Sizes)
PlotExp(NormData, Conditions, "Gene_1")</pre>
```

Index

```
* datasets
    GeneExampleData, 13
    IsoExampleList, 17
* package
    EBSeqHMM-package, 2
beta.mom, 3
EBHMMNBfun, 4
EBHMMNBfunForMulti, 5
EBHMMNBMultiEM_2chain, 7
EBSeqHMM (EBSeqHMM-package), 2
EBSeqHMM-package, 2
EBSeqHMMTest, 9
EBTest, 12
EBTest_ext, 11
f0, 12
GeneExampleData, 13
GetAllPaths, 14
GetConfidentCalls, 15
GetDECalls, 16
{\tt IsoExampleList}, \textcolor{red}{17}
LikefunNBHMM, 17
PlotExp, 18
```