Package 'CompGO'

October 10, 2021

Title An R pipeline for .bed file annotation, comparing GO term enrichment between gene sets and data visualisation

Description This package contains functions to accomplish several tasks. It is

annotate these .bed file regions with genes (plus distance) from

able to download full genome databases from UCSC, import .bed files easily,

aforementioned database dumps, interface with DAVID to create functional

those generated from input .bed files) and finally visualise and compare these enrichments using either directed acyclic graphs or scatterplots.
Version 1.28.0
License GPL-2
Depends RDAVIDWebService
Imports rtracklayer, Rgraphviz, ggplot2, GenomicFeatures, TxDb.Mmusculus.UCSC.mm9.knownGene, pcaMethods, reshape2, pathview
biocViews GeneSetEnrichment, MultipleComparison, GO, Visualization
PackageStatus Deprecated
git_url https://git.bioconductor.org/packages/CompGO
git_branch RELEASE_3_13
git_last_commit e8e77da
git_last_commit_date 2021-05-19
Date/Publication 2021-10-10
Author Sam D. Bassett [aut], Ashley J. Waardenberg [aut, cre]
Maintainer Ashley J. Waardenberg < A. Waardenberg@victorchang.edu.au>
R topics documented:
annotateBedFromDb2bed.sample3compareZscores3

2 annotateBedFromDb

doZtrans	.single	 													 	4
gata4		 														5
getFnAn	ot_genome	 														5
mef2a .		 														6
nkx25 .		 										 				7
p300		 										 			 	7
PCAplot		 										 			 	8
plotDend	lrogam	 										 			 	8
plotDend	lrogram	 														9
plotPairv	vise	 														9
plotTwo	GODags .	 														10
plotZRar	ikedDAG.	 														11
plotZSco	res	 														11
slidingJa	ccard	 														12
srf		 														13
tbx5		 														13
viewKeg	g	 														14
zTransfo	rmDirectory															15
																16

annotateBedFromDb

Annotate .bed file to genes

Description

Index

Wrapper for transcriptsByOverlaps(). Returns a GRanges with the gene and transcript ids associated with the input .bed regions. Sometimes it is necessary to expand the search window a bit, because not all .bed regions directly overlap with a transcription start site, so the 'window' parameter is provided to accomplish this.

Usage

```
annotateBedFromDb(pathToBed = NULL, gRanges = NULL, db = NULL,
  window = 5000)
```

Arguments

pathToBed The system path to a .bed file (directory + file name)

GRanges object rather than re-importing it

db A TxDb object containing the transcripts of the organism (required) window The window around a .bed region to search for genes, default 5kb

Value

A GRanges object with corresponding EntrezGene IDs in gene_id column, plus transcript IDs in tx_i

bed.sample 3

Examples

```
library(TxDb.Mmusculus.UCSC.mm9.knownGene)
txdb = TxDb.Mmusculus.UCSC.mm9.knownGene
data(bed.sample)
range = GRanges(seqnames=bed.sample$chr, IRanges(start=bed.sample$start, end=bed.sample$end))
x = annotateBedFromDb(gRanges = range, db = txdb)
x
```

bed.sample

A sample of 25 rows from a .bed file of mm9 regions

Description

25 regions from a .bed file for use in example code, contains regions from mm9

Usage

bed.sample

Format

A data frame with 25 obs. of 3 variables: chromosome, start position, end position

compareZscores Compare the Z scores of individual GO terms between two input annotation charts

Description

Accepts two fnAnot charts as args, does z score and p value calculations on them and returns a data.frame with important data. A flag, geneInfo, is provided in case the user wants to get information about the intersection and union of genes corresponding to the individual GO terms. Importantly, this function does some implicit thresholding: only terms with a minimum of 'cutoff' genes are compared, and any term present in one list but not the other is discarded.

Usage

```
compareZscores(setA, setB, geneInfo = FALSE, cutoff = 10)
```

Arguments

setA	Functional Annotation Chart to compare
setB	Functional Annotation Chart to compare

geneInfo Whether to add gene intersection and union info to the data.frame

cutoff The minimum number of genes to threshold terms by

doZtrans.single

Value

A data.frame with columns: Term, Zscore.A, Zscore.B, ComparedZ, Pvalue (optionally geneUnion, geneIntersect as well, which are comma-separated strings).

Examples

```
data(funChart1)
data(funChart2)
cz = compareZscores(funChart1, funChart2)
str(cz)
cz = compareZscores(funChart1, funChart2, geneInfo = TRUE)
str(cz)
```

doZtrans.single

Z transform a single functional annotation chart from DAVID

Description

Decomposes each GO term in a functional annotation chart (returned from getFnAnot_genome()) to its Z-score. These tables can be merged for clustering

Usage

```
doZtrans.single(x, name)
```

Arguments

x The functional annotation chart to apply the transformation to

name (optional) The name to give the Z-score column; if not supplied, name is derived

from the input variable

Value

A data.frame of GO terms and Z-scores

```
# Load example fnAnot charts from DAVID:
data(funChart1)
zscore = doZtrans.single(funChart1)
str(zscore)
```

gata4 5

gata4

A .bed file containing genomic ranges sampled from gata4

Description

1000 genomic ranges sampled from gata4 binding sites identified in HL-1 cells (mm9)

Usage

gata4

Format

A data frame with 1000 observations of 3 variables: chromosome, start position, end position.

Source

He, A. (2011) Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhances active in heart. PNAS 108(14), 5632-5637

getFnAnot_genome

Get the functional annotation chart of a gene list using DAVID

Description

Uploads a gene list to DAVID, then performs a GO enrichment analysis. Requires registration with DAVID first here. Returns a DAVIDFunctionalAnnotationChart object which can be easily coerced into a data.frame. DAVID does some automatic thresholding on results. For Z-score standardisation, we found it useful to get DAVID to return all possible annotations despite non-significant P-values and perform our own thresholding.

Usage

```
getFnAnot_genome(geneList, david = NULL, email = NULL,
  idType = "ENTREZ_GENE_ID", listName = "auto_list", count = 1L,
  PVal = 1, background = NULL, bgIdType = NULL, bgListName = NULL,
  getKEGG = FALSE)
```

Arguments

geneList Either a list of genes or a GRanges result from annotateBedFromDb to upload

and functionally enrich

david An RDAVIDWebService object can be passed to the function so a new one

doesn't have to be requested each time

6 mef2a

email If david==NULL, an email must be supplied. DAVID requires (free) registration

before users may interact with their WebService API. This can be accomplished

online (here), then the registered email supplied here.

idType The type of gene IDs being uploaded (MGI, Entrez,...)

listName The name to give the list when it's uploaded to the WebService

count Minimum number of genes per GO term

PVal P-value threshold for GO terms

background If you want to perform enrichment against a specific background instead DAVID's

default (whole genome), supply it here

bgIdType If the background gene ID type is different from the gene list, enter it here

bgListName If you want to give the background a name, enter it here

getKEGG TRUE if you want to download KEGG pathway information as well as GO

Value

Returns a DAVIDFunctionalAnnotationChart after generating it by comparing the supplied gene list to the full genome as a background

Examples

```
## not run because registration is required
## visit http://david.abcc.ncifcrf.gov/webservice/register.htm to register
## Not run:
## You can either supply the registered email:
fnAnot = getFnAnot_genome(exp1$gene_id,
    email = "your.registered@email.com",
    idType="ENTREZ_GENE_ID", listName="My_gene_list-1")
## Or create a DAVIDWebService object with the email:
david = DAVIDWebService$new(email = "your.registered@email.com")
fnAnot = getFnAnot_genome(entrezList, david = david)
## End(Not run)
```

mef2a

A .bed file containing genomic ranges sampled from mef2a

Description

1000 genomic ranges sampled from mef2a binding sites identified in HL-1 cells (mm9)

Usage

mef2a

Format

A data frame with 1000 observations of 3 variables: chromosome, start position, end position.

nkx25

Source

He, A. (2011) Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhances active in heart. PNAS 108(14), 5632-5637

nkx25

A .bed file containing genomic ranges sampled from nkx25

Description

1000 genomic ranges sampled from NKX2-5 binding sites identified in HL-1 cells (mm9)

Usage

nkx25

Format

A data frame with 1000 observations of 3 variables: chromosome, start position, end position.

Source

He, A. (2011) Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhances active in heart. PNAS 108(14), 5632-5637

p300

A .bed file containing genomic ranges sampled from p300

Description

1000 genomic ranges sampled from p300 binding sites identified in HL-1 cells (mm9)

Usage

p300

Format

A data frame with 1000 observations of 3 variables: chromosome, start position, end position.

Source

He, A. (2011) Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhances active in heart. PNAS 108(14), 5632-5637

8 plotDendrogam

PCA	pla	٦t
FCA	hτα	Jι

Plot PCA given an input list of fnAnot charts

Description

Given a list of functional annotation charts, this function outputs a PCA plot

Usage

```
PCAplot(input)
```

Arguments

input

A list of functional annotation charts.

plotDendrogam

Interactive plotting function for groups of GO terms

Description

Given a list of functional annotation charts and optionally an output directory, this function can output dendrograms, PCA analysis plots and a correlation matrix to make large-scale comparisons easy.

Usage

```
plotInteractive(input, outDir = NULL, prefix = NULL, pdf = TRUE)
```

Arguments

input A	list of functional	annotation charts.
---------	--------------------	--------------------

outDir The directory to save plots to.

prefix The prefix to append to each file, if any.

pdf If true, plots will be pdfs. If false, pngs.

plotDendrogram 9

plotDendrogram	Plot dendrogram given an input list of fnAnot charts

Description

Given a list of functional annotation charts, this function outputs a dendrogram

Usage

```
plotDendrogram(input)
```

Arguments

input A list of functional annotation charts.

plotPairwise	Generates a scatterplot of two sets of GO terms based on DAVID P-
	values

Description

Generates a -log10 scatterplot of two sets of GO terms by p-value or corrected p-value with linear fit and correlation. Also includes a Jaccard metric for gene overlap within each GO term. Useful as an overall metric of gene list similarity. NOTE: The plotZScores function is more statistically sound, you should use that instead of this.

Usage

```
plotPairwise(setA, setB, cutoff = NULL, useRawPvals = FALSE,
    plotNA = TRUE, model = "lm", ontology = NULL)
```

Arguments

setA	DAVIDFunctionalAnnotationChart object to compare
setB	DAVIDFunctionalAnnotationChart object to compare
cutoff	The p-value or adjusted p-value to use as a cutoff
useRawPvals	If false, uses adjusted p-values, otherwise uses the raw ones
plotNA	If true, any GO term present in only one list is considered to have a p-value of 1 in the other; otherwise, it is simply removed
model	The model to use when plotting linear fit, default 'lm'
ontology	If a specific ontology (MF, BP, CC) is wanted rather than all terms, supply it here as a string

10 plotTwoGODags

Examples

```
data(funChart1)
data(funChart2)
plotPairwise(funChart1, funChart2)
```

plotTwoGODags

Plots a directed acyclic graph of GO terms from two different sources

Description

Plots a directed acyclic graph of GO terms from two different sources, using colour to show intersection and difference. This is useful to see the specific functional differences between gene lists, complementing the overall metric of gene list similarity

Usage

```
plotTwoGODags(setA, setB, ont = "BP", cutoff = 0.01, maxLabel = NULL,
fullNames = TRUE, Pvalues = TRUE)
```

Arguments

setA A DAVIDFunctionalAnnotationChart object
setB A DAVIDFunctionalAnnotationChart object
ont The ontology to use, one of BP, MF and CC
maxLabel Maximum length of GO term to print

C

cutoff The PValue cutoff to use

fullNames Whether to print the full GO term label or just the GO id

Pvalues Whether to print P-values alongside each label

References

Fresno, C. and Fernandes, E. (2013) RDAVIDWebService: An R Package for retrieving data from DAVID into R objects using Web Services API. http://david.abcc.ncifcrf.gov/

```
data(funChart1)
data(funChart2)
plotTwoGODags(funChart1, funChart2)
```

plotZRankedDAG 11

Description

This function accepts two functional annotation charts as input, performs a comparison on them using compareZscores() and plots a DAG based on the results. The saturation of each node is computed based on the Pvalue, such that the more significant values are darker in colour.

Usage

```
plotZRankedDAG(setA, setB, ont = "BP", n = 100, maxLabel = NULL,
  fullNames = TRUE, Pvalues = TRUE)
```

Arguments

setA	FunctionalAnnotationChart to compare
setB	FunctionalAnnotationChart to compare
ont	The gene ontology category for which to calculate enrichment
n	The number of top-ranked Pvalues to compare
maxLabel	The maximum number of characters in a node's label
fullNames	Whether to print the full GO term label or just the GO id
Pvalues	Whether to print P-values alongside each label

Examples

```
## Not run:
data(funChart1)
data(funChart2)
plotZRankedDAG(funChart1, funChart2, n = 50)
## End(Not run)
```

plotZScores	Performs z transform on two sets of GO terms and plots scatterplot of
	result

Description

Generates a scatterplot of z transformed GO terms and plots the result along with the Jaccard metric for each GO term and linear fit + correlation.

12 slidingJaccard

Usage

```
plotZScores(setA, setB, cutoff = NULL, plotAbs = TRUE, plotNA = FALSE, model = "lm")
```

Arguments

setA	DAVIDFunctionalAnnotationChart object to compare
setB	DAVIDFunctionalAnnotationChart object to compare

plotAbs Whether to plot the absolute values of z-scores or the raw values

plotNA Whether to remove NAs entirely or set all NAs to 0 model The model to use when plotting linear fit, default 'lm'

cutoff If you want to apply a Benjamini corrected P-value cutoff to each list before

generating Z scores, supply it here

Examples

```
data(funChart1)
data(funChart2)
plotZScores(funChart1, funChart2)
```

slidingJaccard Plot two functional annotation charts using a sliding Jaccard coeffi-

cient

Description

This function compares two functional annotation charts using a sliding Jaccard coefficient - a ranked list of P-values is produced, and a sliding window is used to find the Jaccard coefficient of two charts at different cutoffs of the top n terms. This is useful to determine where the majority of overlapping terms is located, and can also be used to compare Jaccard profiles between multiple (up to 4) sets if C and D are supplied.

A DAVIDFunctional Annotation Chart to compare, optional

Usage

```
slidingJaccard(setA, setB, increment = 50, setC = NULL, setD = NULL)
```

Arguments

setC

setA	A DAVIDFunctional Annotation Chart to compare
setB	A DAVIDFunctionalAnnotationChart to compare
increment	The number of terms (n) to increment for each sliding window

setD A DAVIDFunctionalAnnotationChart to compare, optional

srf 13

Examples

```
data(funChart1)
data(funChart2)
slidingJaccard(funChart1, funChart2, 50, FALSE)
```

srf

A .bed file containing genomic ranges sampled from srf

Description

1000 genomic ranges sampled from srf binding sites identified in HL-1 cells (mm9)

Usage

srf

Format

A data frame with 1000 observations of 3 variables: chromosome, start position, end position.

Source

He, A. (2011) Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhances active in heart. PNAS 108(14), 5632-5637

tbx5

A .bed file containing genomic ranges sampled from tbx5

Description

1000 genomic ranges sampled from tbx5 binding sites identified in HL-1 cells (mm9)

Usage

tbx5

Format

A data frame with 1000 observations of 3 variables: chromosome, start position, end position.

Source

He, A. (2011) Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhances active in heart. PNAS 108(14), 5632-5637

14 viewKegg

viewKegg

Compare KEGG pathways between two functional annotation charts

Description

viewKegg uses pathview to compare the gene lists visually by KEGG pathway. You can either supply a pathway id or the function will pick the most differentially enriched pathway between the two inputs. As functional annotation charts don't have differential gene expression information, a boolean scale is used - genes in the pathway are coloured green if from setA, yellow if from both, and red if from setB. We recommend you supply a working directory, as pathview will download an XML and PNG file as well as output an additional PNG of the pathway.

Usage

```
viewKegg(setA, setB, keggTerm = NULL, species = NULL, workingDir = NULL,
    sortByCount = FALSE, ...)
```

Arguments

setA	FunctionalAnnotationChart to compare
setB	FunctionalAnnotationChart to compare
keggTerm	If a specific KEGG pathway is of interest, input the name here; otherwise, the most differentially expressed pathway will be used.
species	The program can usually figure out the species from the KEGG terms, but if it can't, supply the species ID here. From pathview vignette, run 'data(bods); bods' to find species codes.
workingDir	The directory to output into. Recommended, since pathview will put a few different files there each time.
sortByCount	Set TRUE if you want the function to automatically choose the pathway with the most number of genes
	Arguments to be passed to pathview

Value

Output from pathview: a list of 2, plot.data.gene and plot.data.cpd

```
## Not run:
# Since this function requires writing to a directory, it won't be run here
data(funChart1)
data(funChart2)
viewKegg(funChart1, funChart2)
## End(Not run)
```

zTransformDirectory 15

zTransformDirectory	Z-score transformation of DAVID functional annotation charts in a
	supplied directory

Description

Given a directory of functional annotation charts, this function iterates over them and generates Odds Ratio, St. Error and Z scores. This is useful for batch processing, as all the charts can be written to disk somewhere then iterated over by this function automatically. Two options are provided for dealing with absent terms: either the NAs are set as 0 (a pseudo-representation of a Z-score with no enrichment), or incomplete rows are removed. The final table can be used for clustering analyses.

Usage

```
zTransformDirectory(inputDir, cutoff = NULL, pattern = NULL,
  removeNA = FALSE)
```

Arguments

inputDir The directory to search for functional annotation charts

pattern The regex pattern to match files in inputDir

cutoff Reduce the computation to the top n GO terms ranked by variance

removeNA True to only generate the Z-transform table based on GO terms common to all

input enrichment analyses, False to set all NAs as 0

Value

Returns a data.frame of z scores, ORs and SEs

```
## Not run:
#not run as dir required
z.merge = zTransformDirectory("./fnAnot_charts", pattern = "-fnAnot.txt")
# To plot a dendrogram based on Z-scores:
d <- cor(abs(z.merge[2:(ncol(z.merge)-1)]))
dist.cor <- hclust(dist(1-d), method="complete")
plot(dist.cor, xlab="Complete linkage", sub = NA)
## End(Not run)</pre>
```

Index

```
* datasets
    bed.sample, 3
annotateBedFromDb, 2
bed.sample, 3
compareZscores, 3
doZtrans.single,4
gata4, 5
{\tt getFnAnot\_genome}, {\tt 5}
mef2a, 6
nkx25, 7
p300, 7
PCAplot, 8
plotDendrogam, 8
plotDendrogram, 9
\verb|plotInteractive| (\verb|plotDendrogam|), 8
plotPairwise, 9
\verb"plotTwoGODags", 10"
plotZRankedDAG, 11
plotZScores, 11
slidingJaccard, 12
srf, 13
tbx5, 13
viewKegg, 14
{\tt zTransformDirectory}, {\tt 15}
```